<table>
<thead>
<tr>
<th>Year</th>
<th>Fall</th>
<th>Credit Hours</th>
<th>Spring</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td>IBMS 5000: Fundamentals of Biomedical Sciences</td>
<td>8</td>
<td>CSBL 5089: Graduate Colloquium</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>IBMS 5008: Lab Rotations</td>
<td>3</td>
<td>CSBL 5095: Experimental Design and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TSCI 5070: Responsible Conduct of Patient-Oriented Clinical Research</td>
<td>2</td>
<td>IBMS 6090: Seminar (Class Section 3CB)</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IBMS 6097: Research (Class Section 3CB) *</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INTD 6007: Advanced Cell Biology</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INTD 6009: Advanced Molecular Biology</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours:</td>
<td>13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>CSBL 5077: Scientific Writing</td>
<td>2</td>
<td>CSBL 6070: Cancer Biology Preceptorial</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>CSBL 6068: Cancer Biology Core 1; An Introductory Course</td>
<td>1</td>
<td>CSBL 6071: Supervised Teaching (or Elective)</td>
<td>variable **</td>
</tr>
<tr>
<td></td>
<td>CSBL 6069: Cancer Biology Core 2; Advanced Cancer Biology</td>
<td>2.5</td>
<td>IBMS 6090: Seminar (Class Section 3CB)</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>CSBL 6075: Cancer Biology Enrichments Course</td>
<td>0.5</td>
<td>IBMS 7010: Student Journal Club & Research Presentation (Class Section 3CB)</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>IBMS 6090: Seminar (Class Section 3CB)</td>
<td>1.5</td>
<td>IBMS 7099: Dissertation (Class Section 3CB) ***</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>IBMS 6097: Research (Class Section 3CB)</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IBMS 7010: Student Journal Club & Research Presentation (Class Section 3CB)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours:</td>
<td>12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>CSBL 6070: Cancer Biology Preceptorial</td>
<td>0.5</td>
<td>CSBL 6070: Cancer Biology Preceptorial</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>CSBL 6071: Supervised Teaching (or Elective)</td>
<td>variable **</td>
<td>IBMS 6090: Seminar (Class Section 3CB)</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>IBMS 6090: Seminar (Class Section 3CB)</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours:</td>
<td>12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>CSBL 6070: Cancer Biology Preceptorial</td>
<td>0.5</td>
<td>CSBL 6070: Cancer Biology Preceptorial</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>CSBL 6071: Supervised Teaching (or Elective)</td>
<td>variable **</td>
<td>IBMS 6090: Seminar (Class Section 3CB)</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>IBMS 6090: Seminar (Class Section 3CB)</td>
<td>1.5</td>
<td>IBMS 7010: Student Journal Club & Research Presentation (Class Section 3CB)</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>IBMS 7099: Dissertation (Class Section 3CB) ***</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours:</td>
<td>12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fifth Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>CSBL 6070: Cancer Biology Preceptorial</td>
<td>0.5</td>
<td>CSBL 6070: Cancer Biology Preceptorial</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>IBMS 6090: Seminar (Class Section 3CB)</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours:</td>
<td>12.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If additional laboratory rotations are necessary in the Spring semester, research hours may be adjusted accordingly to maintain a total of 12.0 SCH.

** Cancer Biology requires a minimum 6 SCH of didactic elective course work (not including practica) and 2 SCH of supervised teaching. Since different elective courses vary in credit hours, Research (IBMS 6097-3CB) or Dissertation (IBMS 7099-3CB) credit hours for a given semester should be adjusted in order to maintain a total of 12 credit hours for the semester. The menu of electives from which courses are typically selected is shown below. However, students may select, following approval of the student’s supervising professor and discipline executive committee, any accredited course offered by any program in UT Health SA.

Suggested Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>SCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBBL 5024</td>
<td>Genomics 1.0 SCH</td>
<td></td>
</tr>
<tr>
<td>CBBL 5025</td>
<td>Genetics 1.0 SCH</td>
<td></td>
</tr>
<tr>
<td>CBBL 5083</td>
<td>Practical Optical Microscopy 1.0 SCH</td>
<td></td>
</tr>
<tr>
<td>CBBL 6021</td>
<td>Animal Models 3.0 SCH</td>
<td></td>
</tr>
<tr>
<td>CBBL 6048</td>
<td>Biology of Aging 3.0 SCH</td>
<td></td>
</tr>
<tr>
<td>CBBL 6064</td>
<td>Genetics 3.0 SCH</td>
<td></td>
</tr>
<tr>
<td>CBBL 6073</td>
<td>Gynecological Cancers 2.0 SCH</td>
<td></td>
</tr>
<tr>
<td>CBBL 6074</td>
<td>Molecular Aspects of Epigenetics 2.0 SCH</td>
<td></td>
</tr>
<tr>
<td>CBBL 6095</td>
<td>Functional Genomic Data Analysis 2.0 SCH</td>
<td></td>
</tr>
<tr>
<td>CBBL 6165</td>
<td>Medical Genetics 3.0 SCH</td>
<td></td>
</tr>
<tr>
<td>BIOC 5083</td>
<td>Hydrodynamic Methods 2.0 SCH</td>
<td></td>
</tr>
<tr>
<td>BIOC 5085</td>
<td>Biophysical Methods 2.0 SCH</td>
<td></td>
</tr>
<tr>
<td>BIOC 5087</td>
<td>Molecular Biochemistry 2.0 SCH</td>
<td></td>
</tr>
<tr>
<td>BIOC 5091</td>
<td>Special Topics in Biochemistry 1.0 SCH</td>
<td></td>
</tr>
<tr>
<td>BIOC 6010</td>
<td>Gene Expression 2.0 SCH</td>
<td></td>
</tr>
<tr>
<td>BIOC 6015</td>
<td>Metabolic Disorders 2.0 SCH</td>
<td></td>
</tr>
<tr>
<td>BIOC 6035</td>
<td>Biochemistry of Multimolecular Complexes 2.0 SCH</td>
<td></td>
</tr>
<tr>
<td>BIOC 6043</td>
<td>Structure and Function of Membrane Proteins 2.0</td>
<td></td>
</tr>
</tbody>
</table>

SCH

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>SCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICR 5027</td>
<td>Introduction to Immunology 1.0 SCH</td>
<td></td>
</tr>
<tr>
<td>MICR 5028</td>
<td>Virology 1.0 SCH</td>
<td></td>
</tr>
<tr>
<td>PHAR 5013</td>
<td>Principles of Pharmacology 3.0 SCH</td>
<td></td>
</tr>
<tr>
<td>PHAR 6025</td>
<td>Molecular Pharmacology 2.0 SCH</td>
<td></td>
</tr>
<tr>
<td>PHYL 6091-01</td>
<td>Cardiovascular Physiology 2.0 hrs</td>
<td></td>
</tr>
<tr>
<td>PHYL 6091-02</td>
<td>Cell Biology in Neural Science 2.0 hrs</td>
<td></td>
</tr>
<tr>
<td>PHYL 6091-03</td>
<td>Endocrine and Metabolism 2.0 hrs</td>
<td></td>
</tr>
<tr>
<td>PHYL 6091-04</td>
<td>Molecular Physiology 2.0 hrs</td>
<td></td>
</tr>
<tr>
<td>PHYL 6091-07</td>
<td>Ion Channels in Disease 2.0 hrs</td>
<td></td>
</tr>
<tr>
<td>MMED 6017</td>
<td>Cell Responses to DNA Damage 1.0 hrs</td>
<td></td>
</tr>
<tr>
<td>PATH 5021</td>
<td>Biostatistics 3.0 hrs</td>
<td></td>
</tr>
<tr>
<td>INTD 5040</td>
<td>Molecular, Cellular & Developmental Neuroscience 3.0 hrs</td>
<td></td>
</tr>
<tr>
<td>INTD 5043</td>
<td>Systems Neuroscience 3.0 hrs</td>
<td></td>
</tr>
<tr>
<td>INTD 6033</td>
<td>Cell Signaling Mechanisms 2.0 hrs</td>
<td></td>
</tr>
<tr>
<td>INTD 6043</td>
<td>Membrane Proteins 2.0 hrs</td>
<td></td>
</tr>
<tr>
<td>INTD 7074</td>
<td>Topics in Translational Medical Product Development 1.0 hrs</td>
<td></td>
</tr>
</tbody>
</table>

A minimum of 2 semesters of IBMS 7099-3CB (Dissertation) is required for graduation. A student may begin enrolling in IBMS 7099-3CB once the Dissertation Research Proposal and the Dissertation Supervising Committee membership are approval by the GSBS Dean, typically from Spring of Year 3 onward; Final Hours may be applicable for the final semester.

CSBL Courses

CSBL 3005. Advanced Anatomy. Credit Hours.
Selected students will participate in lectures, detailed dissections, presentations, and teaching of Pre-Matriculation students in the gross anatomy laboratory. A special project or readings in the surgical anatomy literature will be assigned. This elective is considered to be a full-time commitment (40 hours per week). Students are expected to 1) attend all lectures given in the Pre-Matriculation program, 2) to teach in all scheduled laboratory sessions, 3) to prepare and present dissections, 4) to help prepare a laboratory examination, 5) to write and present a literature review on an original topic of interest to the student related to the region of the body being studied.

CSBL 4000. Special Topic. 4 Credit Hours.
This is a self-designed course created by both the student and the department to cover a specific topic. A Course Approval Form must be completed along with documentation of the designed course description.

CSBL 4001. Anatomy of the Newborn. 4 Credit Hours.
Anatomy associated with one of the usual medical or surgical specialties, such as gastroenterology, neurology, orthopedics, obstetrics and gynecology, etc. Activities include detailed dissection, presentation of dissected material, assigned readings, and individual project. Course fees: Lab fee $30.

CSBL 4002. Regional Anatomy. 4 Credit Hours.
Anatomy associated with one of the usual medical or surgical specialties, such as gastroenterology, neurology, orthopedics, obstetrics and gynecology, etc. Activities include detailed dissection, presentation of dissected material, assigned readings, and individual project. Course fees: Lab fee $30.

CSBL 4004. Selected Research Project. 4 Credit Hours.
Individual research projects to be arranged between the student and faculty members with whom he/she wishes to work.

CSBL 4005. Advanced Anatomy. 4 Credit Hours.
Selected students are required to participate in lectures, detailed dissections, presentations of prosected material, and teaching in the first year medical gross anatomy laboratory. Special projects, activities, and assigned readings in the surgical anatomy and history of anatomy literature. Course fees: Lab fee $30.

CSBL 4017. Advanced Neuroanatomy. 4 Credit Hours.
Selected students will be assigned a special project and readings in the neuro anatomical literature. Course Fees: Lab fee $30.

CSBL 4024. History of Anatomy In Situ: Reawakening & Development of Anatomy in the 14th - 18th Century Italy. 4 Credit Hours.
An in-depth study of the awakening and development of anatomy in 14th - 18th century Italy, visiting the sites where this occurred in Padua, Bologna, and Florence. The course consists of one week of didactic lectures and discussion prior to two weeks in Italy visiting anatomical museums and two of the oldest universities in the world, and ending with a week of student presentations based on a paper focusing on a historical, social, or scientific issue arising during this period in the Italian medical schools and currently relevant to the students' chosen field of medicine.
CSBL 4025. Anatomy Mentored Teaching. 4 Credit Hours.
The Mentored Teaching Elective allows 3rd and 4th year medical students to serve as teaching assistants for the spring CSBL 5022 Inter-professional Human Gross Anatomy course. CSBL 5022 serves students in the occupational therapy, physical therapy, physician assistant and biomedical engineering programs, and students in the Masters of Anatomy graduate program. Teaching assistants will serve as instructors for laboratory dissections which cover the central and peripheral nervous systems, vertebral column and back, the upper and lower limbs, head and neck, body wall, thorax, abdomen, pelvis, and perineum. Other teaching assistant duties include preparation of prosection specimens for teaching and demonstration, lab practical exam setup and grading, and preparation and presentation of a brief topical review relevant to anatomy. Applicants should have attained a minimum grade of B in Language of Medicine and in Musculoskeletal/Dermatology and exhibit the highest standards of professionalism. Enrollment is by permission of the Undergraduate Medical Education Office and by the course directors.

CSBL 5007. Methods In Cell Biology. 1 Credit Hour.
Through a combination of lectures and demonstrations, the instructors will introduce students to techniques which are currently being used in cellular biology laboratories. The emphasis will be on the applications themselves, their uses, limitations, and the necessary controls. The following topic areas will be covered: imaging and microscopy, immunological techniques, bioinformatics (DNA and protein), rodent anatomy and histology, cytogenetics, and in vitro cell growth and transfection.

CSBL 5012. Physician Assistant Gross Anatomy. 5 Credit Hours.
This course will cover the basic principles of human anatomy. Lectures are correlated with laboratory sessions in which students will learn human gross anatomy of the adult through the study of cadaver prosections, bones, models, atlas drawings and radiographs. Emphasis will be placed on basic systems anatomy as they apply to the physician’s assistant. Course Fees: Gross Anatomy fee $30.00.

CSBL 5013. Gross Anatomy. 6 Credit Hours.
This course will teach structural and functional anatomy of the normal human body. Lectures will serve as introductory information for the laboratory dissections to follow and to clarify the interactions of the various anatomical components to accomplish the function of the body. The course will cover the central and peripheral nervous systems, vertebral column and back, head and neck, body wall, thorax, abdomen, pelvis, and perineum, and the upper and lower limbs. Special emphasis will be placed on the laboratory experience in which the learner will perform a detailed dissection of the entire human body in order to achieve an understanding of the three-dimensional relationships and thus the interactive function of the body. These dissections will be supplemented by the study of prosected specimens, models skeletons, and other demonstration materials. Permission of course director if required to enroll. Course fees: Human materials fee $ 865 Lab fee: $30.00.

CSBL 5020. Dental Neuroscience. 1.5 Credit Hour.
This course will present the student with the basics of neuroanatomy underlying somatosensory perception, special senses, orofacial reflexes, and common neurological disorders. The emphasis will be on neuroanatomical pathways relevant to the head and neck, especially those mediated by the trigeminal system. The course also will include consideration of motor pathways and the special senses, disorders of which will necessarily influence treatment plans developed by future dental practitioners. Acquisition of a basic understanding of the neuroanatomical pathways discussed in lectures will be reinforced by laboratory sessions with representative images of brain and spinal cord sections.

CSBL 5022. Inter-professional Human Gross Anatomy. 5.5 Credit Hours.
This courses will teach structural and functional anatomy of the normal human body. Lectures will serve as introductory information for the laboratory dissections to follow and to clarify the interactions of the various anatomical components to accomplish the function of the body. The course will cover the central and peripheral nervous systems, vertebral column and back, the upper and lower limbs, head and neck, body wall, thorax, abdomen, pelvis, and perineum. Special emphasis will be placed on the laboratory experience in which the learner will perform a detailed dissection of the entire human body in order to achieve an understanding of the three-dimensional relationships and thus the interactive function of the body. The dissections will allow the student to understand the anatomical basis for disease and dysfunction in organ systems and their applications to clinical practice. They will be supplemented by the study of prosected specimens where possible, models skeletons, and other demonstration materials.
CSBL 5023. Development. 1 Credit Hour.
The course provides a survey of concepts in developmental biology (induction, cell-cell interactions, morphogen gradients, morphogenetic movements, transcription regulation, organogenesis) using experimental examples from both invertebrate and vertebrate embryos. The first set of lectures will focus on gametogenesis, fertilization, and early developmental events, such as cleavage, midblastula transition, gastrulation, and axis formation. The second set of lectures will explore the fates of germ layers in the contexts of cell type-specific differentiation and cell-cell interactions during organogenesis.

CSBL 5024. Genomics. 1 Credit Hour.
This course covers historical aspects of the Genomic project and high throughput methods (microarray, SAGE, proteomics, etc.) to perform global analysis of gene expression; the course also provides an overview of new biological fields such as systems biology, functional genomics, and comparative genomics. The students will have the opportunity to become familiarized with tools, methods, databases, and approaches used to extract biological information from global analyses. Hands-on training on biological databases and classes covering examples of the use of genomics to answer questions related to cancer and diseases is an important part of the course, helping the students to visualize how genomics can be used in their own research projects.

CSBL 5025. Genetics. 1 Credit Hour.
This course is designed to provide an overview of genetic research. Topics to be covered include: cytogenetics, mitochondrial genetics, cancer genetics, linkage analysis, complex traits, population genetics, animal models, sex determination, and epigenetics.

CSBL 5026. Stem Cell Biology. 1 Credit Hour.
This course is an up-to-date overview on current topics in stem cell biology. It is intended for the (future) basic scientist who is interested in studying the regulatory mechanisms of stem cells as well as for the (future) clinician who is interested in how stem cell biology will continue to impact patient care. Topics that will be discussed are: (1) basic biology and stem cells, including embryonic stem cells, adult stem cells, stem cells in different tissues and model systems; (2) microenvironment-mediated; (3) epigenetic regulators of stem cells; (4) stem cells in medicine, including regenerative medicine, cancer and aging; and (5) ethics.

CSBL 5030. Basic Histology. 1 Credit Hour.
This course is designed to provide students in the Anatomical Sciences track of the M.S. degree program an introduction to microscopic cell structures and relevant functions followed by study of the four basic human tissues (epithelial, connective, muscle and nervous tissues). In addition, a few specialized tissues (blood cells, bone, cartilage and lymphoid tissues) will be examined in depth to develop skill in understanding function in relation to viewing microscopic anatomical features. Overall, this course is meant to provide a foundation for the understanding of the microscopic architecture of the organ systems of the body and the role these play in normal activity and disease processes. Lectures, independent study (self-directed learning), and laboratory experiences will be used in teaching the fundamentals of human histology.

CSBL 5032. Dental Histology. 5 Credit Hours.
Through lectures, demonstrations, and laboratory work, students in this course will be given the opportunity to study the microscopic structure of the basic tissues and organs of the human body, followed by details of the embryologic development and microscopic structure of the various organs of the oral cavity. Current concepts in cellular biology are presented during the portion of the course in which they are most relevant. The general purpose of this course is to give students the opportunity to become acquainted with the basic embryology, cytology, and histology of normal human tissues and organs, thereby providing a foundation of knowledge for the understanding of normal activity and disease processes. Course Fees: Included in general lab fee. $48 microscope fee for the Freshman year includes this course.

CSBL 5033. Brain Health Journal Club. 1 Credit Hour.
A journal club with an emphasis on brain health. The scope of the journal club is broad, with topics ranging from molecular mechanisms to the impact of injuries on behavior. Brain injuries ranging from stroke, spinal cord injury and traumatic brain injury (TBI) to age-associated neurodegeneration will be emphasized. Scientific articles on relevant or state-of-the-art techniques will also be encouraged. On a rotating basis, participants will be expected to present to the group either a paper of interest and relevance to their work or an update on their ongoing research or some combination of the two. PowerPoint slides are discouraged in favor of a chalk talk when presenting to the group.

CSBL 5060. Advanced Histology. 2 Credit Hours.
This course, designed for students enrolled in the Anatomical Sciences track of the MS degree program in Cell Systems & Anatomy, will examine the microscopic architecture of organs and their higher level organization into systems performing specific functions. Topics covered will include the integumentary, cardiovascular, respiratory, gastrointestinal, endocrine, urinary and male and female reproductive systems. The goal of this course is to enable students acquire knowledge of normal histological structure of organs and organ systems using light and electron microscopy, thereby providing a strong basis for the sound understanding of cell and tissue morphology in health and disease. The course will include lecture, laboratory and self-directed student learning. A prerequisite for this course is Basic Histology.

CSBL 5074. Introduction to Research. 0.5 Credit Hours.
This course is required of all MS students in the Anatomy Track in Cellular & Structural Biology and is available to the Biotechnology Track students. Students will have the opportunity to learn about the research interests of faculty in the program. This course will introduce students to the research strategies and help them identify a mentor and committee members.

CSBL 5077. Scientific Writing. 2 Credit Hours.
This course will provide students with the opportunity to develop skills in scientific writing and the presentation of research results. It will emphasize learning-by-doing and re-doing. Students will be required to write something every week. The capstone project for students will be to write a grant proposal and defend it in front of the class. One hour per week will be devoted to lecture and critique of published work; the other hour will consist of critique and revision of student writing by other members.

Topics to be covered include: (1) fundamentals of writing clearly, (2) principles of revision, (3) effective presentation of data, (4) fundamentals of oral presentation, (5) writing/presenting to the appropriate audience, (6) how to write background/introductory sections, (7) how to write materials and methods, (8) how to write the discussion section, and (9) how to constructively critique one's own and others writing.
CSBL 5083. Practical Optical Microscopy. 1 Credit Hour.
This course will be a one-hour elective for graduate students consisting of eight (8) one-hour lectures plus eight (8) one-hour laboratories. The course focuses on the practical aspects of using optical microscopes. The objectives are to teach students the fundamental principles of optical microscopy and to provide them with hands-on experience using the optical instrumentation in the Institutional Imaging Core.

CSBL 5089. Graduate Colloquium. 2 Credit Hours.
This course is designed to provide graduate students with training in evaluating the scientific literature and in presentation of research in a seminar or journal club format. The course will focus on critical thinking, including evaluation of existing literature, interpretation of experimental results, and comparison of alternative models and interpretations. These tools are essential both for oral presentations and for writing grant proposals and manuscripts. Emphasis will be placed on evaluation of the science, organization of the manuscript, and on oral presentation skills.

CSBL 5091. Special Topics. 1-9 Credit Hours.
No description available.

CSBL 5095. Experimental Design And Data Analysis. 3 Credit Hours.
The purpose of the course is to provide an introduction to experimental design and statistical analysis. The emphasis of the course will be on the selection and application of proper tests of statistical significance. Practical experience will be provided in the use of both parametric and nonparametric methods of statistical evaluation. Among the topics to be covered are: data reduction, types of distributions, hypothesis testing, scales of measurement, chi square analysis, the special case of the comparison of two groups; analysis of variance; a posteriori multiple comparisons tests, tests of the assumptions of parametric analyses, advanced forms of the analysis of variance, linear regression, and correlation analysis. This course involves the use of statistical software; therefore, access to a laptop or a computer with web access for classes and examinations is required.

CSBL 6015. Selective Topics In Oncology: Gynecological Cancers. 2 Credit Hours.
This advanced elective course for the Cancer Biology Track provides a unique learning experience intended to prepare students in the emerging research areas of gynecological cancers for designing research experiments using pre-clinical and clinical research materials. The entire course comprises a small-group format in which students interact closely with a group of faculty who has active research or clinical programs focusing on molecular, clinical, and therapeutic areas of gynecological cancers.

CSBL 6021. Animal Models. 3 Credit Hours.
The relevant biology, applicability, and practical use of a number of animal models to biomedical research is covered. Invertebrate (e.g., C. elegans) and vertebrate (e.g., fish and rodents) model systems are included in the course. Strengths and weaknesses of each organism that render them particularly valuable as animal models are emphasized. Experimental approaches and tools that are utilized in conjunction with each animal model are rigorously examined. The course is taught from primary scientific literature using classic historical publications and recent publications.

CSBL 6040. Gross Anatomy Mentored Teach. 1 Credit Hour.
The Gross Anatomy Mentored Teaching Elective allow students in the Integrated Biomedical Sciences Program, School of Health Professions, and other qualified students to serve as preceptors for the spring CSBL 5022 Interprofessional Human Gross Anatomy course. CSBL 5022 serves students in the occupational therapy, physical therapy, physician assistant and biomedical engineering programs, and students in the Masters of Anatomy graduate program. Preceptors will serve as instructors for laboratory dissections which cover the central and peripheral nervous systems, vertebral column and back, the upper and lower limbs, head and neck, body wall, thorax, abdomen, pelvis, and perineum. Other preceptor duties include preparation of dissection specimens for teaching and demonstration, lab practical exam setup and grading, and preparation and presentation of a brief topical review relevant to anatomy. Students enrolling in this elective must have taken an approved human gross anatomy course (as determined and agreed upon by the course directors) with a minimum final grade of B within the previous five years.

CSBL 6048. Biology of Aging. 4 Credit Hours.
Biology of Aging is the core course of the Biology of Aging Track. The course consists of two modules: Aging and Longevity Mechanisms and Molecular and Cellular Mechanisms of Aging. The purpose of this course is to provide students with the most up-to-date information on the current understanding of the aging process. This advanced interdisciplinary graduate course provides experimental understanding of the interrelated areas of aging and age-related diseases. Faculty from several departments will be involved in teaching this course, which will cover the molecular and cell biology of aging, model systems used for aging studies, age-related changes in organs and tissues, and age-related diseases.

CSBL 6049. Cellular and Molecular Mechanisms of Aging. 2 Credit Hours.
This course provides up-to-date information on the current understanding of cellular and molecular mechanisms that contribute to aging. The focus is on investigation of specific mechanisms of aging including oxidative stress, nutrient sensing signaling pathways, stem cells and senescence, and genome stability. Experimental design and analysis, including pros and cons of approaches used to gain knowledge and how to appropriately interpret data, will be discussed throughout the course. The relationship between age-related changes in function and potential contributions age associated diseases will be examined via recently published research.

CSBL 6050. Aging and Longevity Mechanisms. 2 Credit Hours.
This module will focus on and evaluate several approaches used to modulate longevity and how these are used to discover the genetic, physiological and intracellular foundation of aging processes. The course will consist of interactive lectures complemented by guided reading of currently research papers. Students will be taught to hone critical reading skills and develop testable hypotheses to carry research forward. Topics will include: Genetics of Aging, Exceptional Longevity, Pharmacological Interventions, Calorie Restriction, Healthspan and Pathology of Aging.

CSBL 6058. Neurobiology Of Aging. 2 Credit Hours.
The nervous systems of many species, including humans, show obvious declines in function as a result of increasing age. In addition to the gradual decline observed in neural function, it is clear that increasing age also results in increased susceptibility of the nervous system to degenerative diseases such as Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis. This course will focus on recent findings and topics related to the underlying pathology of aging in the nervous system and the relationship of aging to neurodegenerative disease.
CSBL 6059. Stem Cells & Regenerative Medicine. 1 Credit Hour.
The fields of stem cells and regenerative medicine are rapidly evolving and have great potential to change the way medicine is practiced. This course will encompass topics from basics of tissue specific stem cell biology to pre-clinical animal models, strategies and progress in regenerative medicine. We will discuss some of the most current research being done in regenerative medicine from stem cell transplantation to biomaterials. Prerequisite: INTD 5000.

CSBL 6060. Anatomical Sciences Thesis. 1-8 Credit Hours.
Designed as an alternative to a "bench research"-based thesis, this longitudinal course for the Anatomical Sciences track in the Masters Program will culminate in the production of a thesis ideally suitable for adoption as a scholarly publication in a peer-reviewed journal. The thesis should focus on assessment of an unanswered and important question on a relevant and approved subject, involve in-depth research and demonstrate critical thinking on the part of the student. A student in the Anatomical Sciences Track will meet with the Course Director during the spring semester of his/her first year in the program to begin to identify a research area and specific topic(s) for his/her thesis proposal. Areas of focus include (but are not limited to) the following: 1) Clinical Anatomy - anatomy related to medical procedures and/or training of health professionals; 2) Anatomical Variations - comparative research utilizing human cadavers in the gross anatomy laboratories or comparative research in animal models; 3) Anatomical Sciences Education - education research on anatomy teaching methods and approaches to teaching anatomy to health professions students; 4) History of Anatomy - research on the development of human anatomical studies, comparative anatomy concepts, anatomy education, or involving other applications of the humanities to anatomical sciences (e.g. medical illustration, literature, music); 5) Human and rodent micro-anatomy/histology; or 6) Anatomical aspects of a biomedical research endeavor.

CSBL 6064. Genes & Development. 4 Credit Hours.
Genes and Development is the core course of the Genetics, Genomics, and Development Track. The course consists of four modules: genetics, genomics, developmental biology, and stem cell biology. Basic concepts in genetics such as cytogenetics, mitochondrial genetics, cancer genetics, linkage analysis, complex traits, population genetics, animal models, sex determination, and epigenetics will be presented. The genomics section will include historical aspects of the genome project and high throughput analysis. The students are introduced to new techniques in global analysis as well as have hands-on experience. The developmental biology section provides a survey of concepts in developmental biology (induction, cell-cell interactions, morphogen gradients, morphogenetic movements, transcriptional regulation, organogenesis) using experimental examples from both invertebrate and vertebrate embryos. The stem cell biology section includes the following topics: basic biology of stem cells, including embryonic stem cells, adult stem cells, stem cells in different tissues and model systems; microenvironment-mediated and epigenetic regulators of stem cells; stem cells in medicine, including regenerative medicine, cancer, and aging; and ethics. Required for the Genetics, Genomics & Development Track.

CSBL 6068. Cancer Biology Core 1; An Introductory course. 1 Credit Hour.
This course introduces the key features of cancer biology. In particular this course will provide initial insight into the clinical presentation and the cellular processes involved in cancer biology. In addition will be an initial presentation of molecular oncology. Topics examined include oncogenes, tumor suppressor genes, apoptosis, control of cell cycle regulation, and control of cellular growth and proliferation. Required for Cancer Biology Discipline. Prerequisites: INTD 5007 (or INTD 6007 and INTD 6009).

CSBL 6069. Cancer Biology Core 2; Advanced Cancer Biology. 2.5 Credit Hours.
This course is designed to provide a detailed representation of cancer biology, from progression, standard of care and molecular alterations that drive recent diagnoses and therapeutic strategies. In addition, this course will offer an overview on special populations affected by cancers and models used in the investigation of cancer. Included are basic experimental methods, mouse models, ex vivo systems, molecular profiling and clinical trials. The conceptual notions on clinical trials of cancer drugs and the process of development of novel therapeutic drugs in cancer will be discussed. Required for Cancer Biology Discipline. Prerequisites: INTD 5007 (or INTD 6007 and INTD 6009) and CSBL 6068.

CSBL 6070. Cancer Biology Preceptorial. 0.5 Credit Hours.
This is a discussion-based course to help unify our cancer biology students. The idea is to work in a small team based manner for students to disseminate knowledge that they are obtaining by participating in advanced courses of different topics by presenting the topic, methods and relevance to cancer biology to their peers. The intent is that participating students will discuss the topic in detail to understand how it might be useful to cancer biology research, in effect an active learning process. The goal is to provide an integrated multidisciplinary view on cancer research. Prerequisites: CSBL 6068 and CSBL 6069.

CSBL 6071. Supervised Teaching. 1-12 Credit Hours.
This course consists of participation in the teaching program of the first-year medical, dental, or health professions curriculum. Semester hours vary depending on the time spent in teaching.

CSBL 6072. Presentation Skills. 0.5 Credit Hours.
This course is designed to provide graduate students in the CSB masters program the opportunity to develop their skills in oral presentation. The course will focus on critical thinking, clear and concise presentation of research endeavors, and communicating science to the public, to students, and to other scientists. The course will meet for 1 hour every other week and is intended for MS students in their second year of study. Part I (Fall Semester) will focus on general scientific presentation skills.

CSBL 6073. Selective Topics In Oncology: Gynecological Cancers. 2 Credit Hours.
This is an advanced elective course for the Cancer Biology Track. The course is a unique learning experience in preparing students in the emerging research areas of gynecological cancers for designing research experiments using preclinical and clinical research materials. The entire course is a small-group format in which student interact closely with a group of faculty who have active research or clinical programs focusing on molecular, clinical, and therapeutic areas of gynecological cancers.
CSBL 6074. Molecular Aspects Of Epigenetics. 2 Credit Hours.
The purpose of this course is to develop an understanding of the molecular aspects of epigenetics. This advanced course will be a unique learning experience that prepares the student to evaluate and design new research in the areas of epigenetic processes including imprinting, gene slicing, X chromosome inactivation, position effect, reprogramming, and the process of tumorigenesis. This module concerns epigenetic mechanisms. Topics include: DNA methylation, histone modifications, epigenetics and stem cells, cancer epigenetics, RNA interference and epigenetics, bioinformatics and epigenetics, and translational epigenetics. This course will include a didactic program and student discussion. For the student discussion module, faculty and students will jointly discuss key publications that serve to bridge the gap between the student's prior understanding of the field and the state of the art in that area.

CSBL 6075. Cancer Biology Enrichments Course. 0.5 Credit Hours.
This course is a series of enrichment presentations to the students, either in lecture format, visit to labs or attendance of a conference. The goal is to give secondary reinforcements of the didactic components of the core courses on cancer biology. Required for Cancer Biology Discipline.

CSBL 6090. Seminar. 1-9 Credit Hours.
Attendance and participation in the regularly scheduled department seminar series is required each semester the course is offered. The activities included in the seminar course are attendance at invited seminars, journal club, and the student presentations including student annual progress and final dissertation and thesis presentations.

CSBL 6094. Advanced Neuroanatomy. 0.5 Credit Hours.
This course in neuroanatomy is offered to graduate students seeking to advance their knowledge beyond the fundamental level. The course consists of reading from more advanced texts and current anatomical literature as well as dissection of deep white matter tracts within the cortex. The student must also complete a 20-page paper on a neuroanatomical topic.

CSBL 6095. Functional Genomic Data Analysis. 2 Credit Hours.
This course covers basics of genomic data analysis. Focus is on general computational methods, their biomedical basis, and how to evaluate analysis results. Qualitative algorithm descriptions are expected. Prerequisites: CSBL 5095 or Equivalent.

CSBL 6097. Research. 1-12 Credit Hours.
This course consists of independent, original research under the direction of a faculty advisor.

CSBL 6098. Thesis. 1-12 Credit Hours.
This course consists of instruction in the preparation of the thesis. Registration for at least one term is required of M.S. candidates. Admission to candidacy for Master of Science degree is required.

CSBL 6165. Medical Genetics. 3 Credit Hours.
This course provides an introduction to the basic concepts of medical genetics and current areas of medical genetic research. The course reviews basic genetic concepts including the principles of Mendelian and nontraditional inheritance, cytogenetics, molecular genetics, quantitative and population genetics, and discuss important medical aspects of genetic counseling and pedigree analysis, dysmorphology, cancer genetics and counseling for inherited cancers, developmental genetics, prenatal diagnosis, newborn screening, and pharmacogenetics. Diagnosis and current research toward treatment and cure of common genetic disorders affecting metabolism, reproduction, the endocrine system, the functioning of the eye and the nervous system are discussed. An important aspect of the course will be a discussion of ethical issues in medical genetics. A basic background in genetics, cell biology, and biochemistry is assumed. Prerequisites: A basic background in genetics, cell biology, and biochemistry.

CSBL 7014. Anatomy 1. 5 Credit Hours.
This course provides the basic principles of human anatomy. Students have the opportunity to learn human anatomy as it relates to function through the study of bones, cadaver prosections, models, atlas drawings and photographs, and their own bodies. Concentration is on osteology, radiology, arthrology, neuromuscular, vascular, and basic systems anatomy as they apply to physical therapy. Course fees: Lab Assistance fee $10 per hour Gross Anatomy Lab fee $30.

CSBL 7099. Dissertation. 0.5-12 Credit Hours.
Registration for at least one term is required of Ph.D. candidates. Prerequisites: admission to candidacy for Doctor of Philosophy degree.

CSBL 8010. Anatomy 2. 2 Credit Hours.
This course reinforces principles of human anatomy studied in CSBL 7014. Students study human anatomy as it relates to function through cadaver dissection. Concentration is on osteology, radiology, arthrology, neuromuscular, vascular, and basic systems anatomy as they apply to physical therapy. Course fees: Lab Assistance fee $10 per hour Gross Anatomy Lab fee $30 Human Materials fee $865.

IBMS Courses

IBMS 5000. Fundamentals Of Biomedical Sciences. 8 Credit Hours.
This core course covers the fundamentals of biochemistry, molecular biology, cell biology, organismal and systems biology, and microbiology and immunology. The course is designed for first-year graduate students matriculating into the Integrated Biomedical Sciences Program (IBMS).

IBMS 5008. Lab Rotations. 1-3 Credit Hours.
This course provides an opportunity for students to participate in research activities in the laboratories of faculty members in different disciplines to learn laboratory skills and to gain an introduction to the research fields of faculty members.
IBMS 6090. Seminar. 1.5 Credit Hour.
This course is required of all students in the IBMS program, except of those who have signed up for Final Hours. Students are required to attend a minimum of 16 seminars per semester and to complete a requirement to demonstrate their attendance and participation. To fulfill the minimum number of seminars, students may include seminars offered by disciplines other than their own in which they are enrolled. However, to enroll, students should obtain permission from the course Section Director affiliated with the appropriate discipline. The course numbers of the individual course sections are IBMS 6090-1GEN, 6090-2BA, 6090-3CB, 6090-4CGM, 6090-5III, 6090-6MBB, 6090-7NS and 6090-8PP for the IBMS Disciplines: Biology of Aging (BA), Cancer Biology (CB), Cell Biology, Genetics & Molecular Medicine (CGM), Infections, Inflammation & Immunity (III), Molecular Biophysics & Biochemistry (MBB), Neuroscience (NS), and Physiology & Pharmacology (PP). Some students who have not declared a discipline, and have obtained the approval of their academic advisor and the Senior Associate Dean of the GSBS, may sign up for IBMS 6090-1GEN. A list of seminars from all disciplines will be posted on the Graduate School website. Each Section Director will determine, for the relevant IBMS-6090 section, the policy for tracking student’s attendance and participation in seminars.

IBMS 6097. Research. 0.5-12 Credit Hours.
This course consists of independent, original research under the direction of a faculty advisor. Students should enroll in the research course section that corresponds to the most appropriate IBMS Disciplines: IBMS 6097-2BA for Biology of Aging (BA), IBMS 6097-3CB for Cancer Biology (CB), IBMS 6097-4CGM for Cell Biology, Genetics & Molecular Medicine (CGM), IBMS 6097-5III for Infections, Inflammation & Immunity (III), IBMS 6097-6MBB for Molecular Biophysics & Biochemistry (MBB), IBMS 6097-6NS for Neuroscience (NS), and IBMS 6097-7PP for Physiology & Pharmacology (PP). All students are required to meet with their research supervising committees at least once per semester. Students who have not declared a discipline should sign up for IBMS 6097-1GEN, General section.

IBMS 6098. Thesis. 1-9 Credit Hours.
Registration for at least one term is required for M.S. candidates. Prerequisite: Admission to candidacy for the Master of Science degree is required.

IBMS 7001. Qualifying Exam. 1 Credit Hour.
The objective of the Qualifying Examination (QE) is to determine if a student has met programmatic expectations with regard to: i) Acquiring a level of scientific reasoning and a knowledge base in his/her field of study appropriate for a graduate student at the current stage of training; ii) Demonstrating skills of problem-solving and development of experimental strategies designed to test hypotheses associated with a specific scientific problem; and iii) Demonstrating the ability to defend experimental strategies proposed for solving scientific problems. Successful completion of the QE is required for Advancement to Candidacy and continuation in the IBMS Ph.D. program. During the Spring semester of Year 2 (4th semester overall) of the student’s program, the QE will be administered by a faculty committee approved by a student’s Discipline leadership. Each IBMS discipline will administer the QE process for its students so as to achieve the goals of the discipline while satisfying the expectations of the IBMS graduate program. In general, the QE requires the solving of a relevant unsolved problem in the biomedical sciences by writing a research proposal based on an idea conceived and developed by the student, followed by an oral defense-of-proposal to explore the student’s problem-solving process, and the soundness of the student’s experimental design. Following the QE, a report will be submitted by the chair of the examination committee to the student’s discipline leadership indicating the outcome of the exam and any recommendations that may be required to foster further academic progress by the student. IBMS 7001 is divided into 7 modules overseen by the 7 IBMS Disciplines, each that is responsible for providing its students with a detailed description of the examination process, and for ensuring that the programmatic expectations and goals of the QE are met.

IBMS 7010. Student Journal Club & Research Presentation. 1-2 Credit Hours.
IBMS students should have continuous experience in: 1) discussion and critical analysis of current scientific literature (journal clubs) and, 2) formal presentation of their ongoing research progress to other students and faculty members of their discipline. A discipline-specific course or combination of courses that contains a semester minimum of 0.5 credit hours of scientific literature discussion and 0.5 credit hours of research presentation. This course will be a continuous requirement beginning the Fall semester of the second year until the preceding semester of the dissertation defense. At least once per academic year, students will provide a formal presentation of their research progress to other students and faculty members of their discipline. As well, they will contribute to journal club discussions of current scientific literature. Course will be sub-divided by Disciplines as follows: IBMS 7010-1GEN (General Section) IBMS 7010 -2BA (Biology of Aging) IBMS 7010 -3CB (Cancer Biology) IBMS 7010 -4CGM (Cell Biology, Genetics & Molecular Medicine) IBMS 7010 -5III (Infection, Inflammation & Immunity) IBMS 7010 -6MBB (Molecular Biophysics & Biochemistry) IBMS 7010 -7NS (Neuroscience) IBMS 7010-8PP (Physiology & Pharmacology).
IBMS 7099. Dissertation. 1-12 Credit Hours.
This course is designed to prepare graduate students writing their doctoral dissertation. A candidate for the Ph.D. degree must register for the Dissertation course for at least two terms. Students should enroll in the research course section that corresponds to the most appropriate IBMS discipline: IBMS Disciplines: IBMS 7099-2BA for Biology of Aging (BA), IBMS 7099-3CB for Cancer Biology (CB), IBMS 7099-4CGM for Cell Biology, Genetics & Molecular Medicine (CGM), IBMS 7099-5IIl for Infections, Inflammation & Immunity (III), 7099-6MBB for Molecular Biophysics & Biochemistry (MBB), IBMS 7099-6NS for Neuroscience (NS), and IBMS 7099-7PP for Physiology & Pharmacology (PP). Prerequisite: Registration is only permitted following a student’s admission to candidacy for the Ph.D. degree, approval of the dissertation research proposal and approval of the membership of the candidate’s Supervising Committee.

INTD Courses

INTD 1091. Independent Study. 4 Credit Hours.
Students will work directly with a faculty advisor or assistant dean to develop an independent plan of study.

INTD 3001. International Elective. Credit Hours.
Students will work with the course director and Assistant Director of Global Health to identify an appropriate international elective site, using established sites/programs or one that the student discovers on their own. All rotations must be vetted and approved by the course director and will adhere to a community service-learning model that is a structured educational experience combining community service with preparation and reflection. Students are expected to help shape the learning experience around community-identified needs and advance insight related to the context in which service is provided, the connection between service and academic coursework, and students’ roles as citizens and professionals. Students will spend 4 weeks living and working at an international service site. Sites may allow for a range of experiences, such as participating in patient care, conducting clinical or public health research, and/or participating in a language immersion program. There may also be opportunities for patient education and emphasis on efforts of local empowerment, aiming to build up the communities in a sustainable way. Regardless of the focus, all sites must be supervised by qualified health care providers. Students are encouraged to integrate themselves into the health care delivery system, to explore community needs that they could address, and when possible, to strive to make an impact through community education, home visits, and research. Reflection essays serve as a way to process experiences, including clinical cases, new perspectives gained, and analysis of health care disparities, and strategies for the overcoming poverty-related health problems. Students are encouraged to share their experiences upon return through a formal presentation.

INTD 3002. School of Medicine Research Elective. Credit Hours.
Students will participate in basic or clinical research projects under the supervision of university faculty. The goal of this elective is to immerse students in a rich research environment and provide an opportunity to work with research mentors to fully engage in the research process from writing the proposal to collecting the data to disseminating research results. This elective is open to students who already have an established working relationship with a faculty member and who wish time to continue their work, students who wish to establish a new project, and for students who are in the MD-MPH degree program and MD with Distinction in Research Program. Interested students must contact the course director prior to the enrollment date to express interest in the elective and receive further instructions on the application process for the research and identification/confirmation of the faculty mentor.

INTD 3030. Clinical Foundations. 3 Credit Hours.
The purposes of this course are to 1) Prepare students to excel as learners in clinical settings by providing foundations for clinical skills including finding information, presenting cases, charting, writing orders, completing other paperwork, and clinical reasoning including basic EKG and radiograph interpretation; 2) Assist students in developing new skills expected of third-year clerks including lab skills (phlebotomy, ABG, blood cultures, hemoccult cards), IV insertion, PPD placement, sterile gowning/gloving, basic suturing, nasogastric tube placement, O2 management, and Basic Cardiac Life Support; and 3) Prepare students for their new roles in clinical settings, where they encounter patient care responsibilities along with patient privacy and ethical issues. Successful completion of the first two years of Medical School and approval of the director of the MD/PhD program are required.

INTD 3058. Hospice and Palliative Medicine. Credit Hours.
This rotation offers clinical experience in Hospice and Palliative Medicine (HPM). Palliative care provides treatment for seriously ill hospitalized and ambulatory patients and focuses on symptom management, enhancement of function, physical comfort, quality of life, psychosocial support, and communication about the goals of medical care for the patients as well as their families.

INTD 3091. Independent Study. 9 Credit Hours.
Students will work directly with a faculty advisor or assistant dean to develop an independent plan of study.

INTD 4007. Interprofessional Community Service Learning. 2 Credit Hours.
This is an innovative interdisciplinary service learning (CSL) course offered in partnership with the UT School of Pharmacy, PHR 270S, to allow medical students to integrate meaningful community service with instruction, preparation, and reflection to enrich the learning experience, teach civic responsibility, and strengthen communities. This course will provide the opportunity for students to examine social justice and social determinant of health issues and apply these principles in a structured serviced learning practicum. The student-led service learning project will address the social and health needs of a community partner and will be conducted with the partner agency in a culturally competent manner. Through online learning modules, readings, and discussion; monthly class sessions; a group service learning project; and a structured service learning practicum, this course combines community service with preparation and reflection to foster civic responsibility in the health professions. Open for Cross Enrollment on Space Available basis.

INTD 4008. Interprofessional Care in HIV. 0.5 Credit Hours.
Students will have the opportunity to learn how to function as a member of an interprofessional team in HIV case management. The objective is for students to become familiar with issues of patient safety, health literacy, medication reconciliation, and interprofessional teamwork in HIV care. This is an elective didactic course. This is an elective didactic course.

INTD 4009. Interprofessional Care in HIV. 2 Credit Hours.
Students will have the opportunity to learn how to function as a member of an interprofessional team in HIV case management, and become familiar with issues of: patient safety, health literacy, medication reconciliation, treatment guidelines, and interprofessional teamwork in HIV care.
INTD 4015. Humankind in Medicine Fellowship. 2 Credit Hours.
This is a longitudinal 4-year elective to support and nourish the inherent altruism of our students. This elective will bring together like-minded students and faculty who have a passion for caring for the medically underserved in their communities. The students will take a leadership role in managing and directing the student-run clinics at the Alpha Home, SAMM Transitional Living and Learning Center, Haven for Hope, Travis Park Dermatology (under faculty supervision). Clinical experiences will be at these clinics. This elective will include a few evening seminars throughout the year in which students and faculty meet to discuss social justice, how to start a free clinic, homelessness and topics chosen by the students. Every student will complete a project of their choice over the year.

INTD 4018. Independent Elective in Ethics. 2 Credit Hours.
In this longitudinal course, students will be required to undertake an independent study into a specific issue in medical ethics or medical humanities. Students will be required to read on research methods in medical ethics as well as literature in their area of interest, and then to propose and conduct an original study project, a literature review, a position paper, or an ethical analysis of a particular topic or case. Students will be expected to write an academically rigorous final research report of 10 to 15 pages. Students will be encouraged to produce a final paper that can be submitted for publication in a peer-reviewed bioethics or medical humanities journal. Students will be required to meet with the instructor and/or chosen faculty advisor over the course for assistance, guidance, and discussion. (Center for Medical Humanities and Ethics).

INTD 4019. Clinical Ethics. 2 Credit Hours.
Students in this two-week course will have the opportunity to focus on work in clinical ethics consultation. The student will be required to participate in rounds as an ethicist, do in-depth reading on clinical ethics consultation, observe clinical ethics consults, attend ethics committee meetings, and provide an educational seminar to hospital staff on an issue of ethical significance.

INTD 4025. Healthcare Practice and Policy Elective. 0.5 Credit Hours.
The Healthcare Practice Elective is an introductory-level, discussion-based, eight-hour course targeted to fourth-year medical students. The course focuses generally on practice and policy issues of payment methodologies, cost-effectiveness, and access to care.

INTD 4030. Preparing for Global Health Work. 2 Credit Hours.
This is a 2-week multidisciplinary course for 4th-year medical students who are planning future global health experiences, arising in response to enormous interest in international medicine, with increasing numbers of students choosing to spend time overseas during medical school. This preparatory course aims to provide a foundation of practical knowledge in global health to optimize the students’ overseas experiences, facilitate their adaptation to working in different cultural settings, and maximize their impact in the communities where they serve. Topics include chronic and infectious disease, parasite infection, prioritizing community resources, health disparities, ethical dilemmas, cultural awareness, and professionalism. Course material is presented through a variety of approaches, including lectures, small-group case discussions, laboratory sessions, and online learning modules.

INTD 4045. Patient Notes- Enrichment Elective. Credit Hours.
It is an interactive, inter-professional course that engages students in music listening sessions to teach students active listening skills. Through various forms of music, students will learn how to actively listen for specific details to gain insight on meaning, become comfortable with ambiguity and interpretation, and develop pattern recognition skills to quickly recognize deviation. Students will also develop stronger methodology for writing patients notes through conceptual practice of SOAP format notes for music pieces. Taught jointly by UTHSCSA faculty and professional musicians, this strategy of applying practical skills to an abstract concept such as music will refine these skills for students in clinical settings. Specifically, this course aims to improve interpersonal communication skills, and organizational note writing. This is also an opportunity for students to practice problems solving with other healthcare professionals.

INTD 4048. Art Rounds. 2 Credit Hours.
This is an interactive, interprofessional course that takes students to the McNay Art Museum to learn physical observation skills. Studies demonstrate that increased observational skills translate to improved physical examination skills. Using artwork as patients, students will have the opportunity to learn how to observe details and how to interpret images based on available evidence. Taught jointly by Health Science Center faculty and McNay museum educators, students will have the opportunity to develop and hone their observation, problem solving, and assessment skills. They will also observe, interpret, and give case reports on the original works of art to teach them the skill of verbalizing descriptions of what is seen, and not to accept assumptions made with a first impression. Open for Cross Enrollment on Space Available basis.

INTD 4058. Hospice and Palliative Medicine Elective. 4 Credit Hours.
This rotation offers clinical experience in Hospice and Palliative Medicine (HPM). Palliative care provides treatment for seriously ill hospitalized and ambulatory patients and focuses on symptom management, enhancement of function, physical comfort, quality of life, psychosocial support, and communication about the goals of medical care for the patients as well as their families.

INTD 4103. Communication Skills. 0.5 Credit Hours.
To introduce fourth year medical students to the principles of conducting public interviews, presentations and effectively disseminating information to the communities they will serve.

INTD 4104. Improving Patient Outcomes. 0.5 Credit Hours.
This course is designed to increase a student’s knowledge of and skills in identifying systemic problems with health care delivery and patient safety, collecting and analyzing data, generating solutions, presenting results and evaluating peers. The course objectives include facilitating systems thinking, exposing students to the ACGME general competencies (with emphasis on practice-based learning and improvement and systems-based practice), increasing understanding of health care economics and working in teams.

INTD 4105. Medical Jurisprudence. 0.5 Credit Hours.
The course will center on the Texas Medical Practice Act and applicable federal laws.

INTD 4106. Practical Ethics For Healers. 0.5 Credit Hours.
The course is the capstone of the four-year longitudinal curriculum in humanities and ethics. The goals are to reflect upon 1) physician’s values, attitudes, and their interaction with cultural values and attitudes; 2) the historical and moral traditions of medicine in the context of society, politics, spirituality, and the health care system; and 3) the personal identity of a doctor. Open for Cross Enrollment on Space Available basis.
INTD 4107. The Skin Around Us: A View of Skin Disease from a Humanities Perspective. 4 Credit Hours.
This elective is for fourth year medical students with a special interest in learning about skin diseases through a humanities perspective. Throughout the four week course, students will attend daily clinics, create a project and write an essay on activities encountered during the elective. The students will also complete brief writing assignments each week after watching videos, movies, and/or reading books.

INTD 4110. Getting Ready To Teach During Your Residency Program. 0.5 Credit Hours.
The goal of this 8-hour course is to help senior medical students, who will be residents in a few months, develop teaching skills that will enhance the quality of their interactions with students. The course will be conducted in an interactive workshop format to allow participants to practice important teaching skills for residents. These include 1) orienting and priming students to their responsibilities and roles and accepting the personal role of teacher and role model, 2) giving feedback to improve student performance, 3) helping students to improve their patient presentations-the use of questioning, and 4) coaching procedural and technical skills. The participants will practice these skills and receive feedback from their course peers and instructors based on the guidelines for clinical teachers in action with students and provide critiques. Large and small group discussions and role plays will be used to reinforce teaching principles.

INTD 4201. Getting Ready To Teach During Your Residency-RAHC. 0.5 Credit Hours.
The goal of this course is to help senior medical students, who will be residents in a few months, develop teaching skills that will enhance the quality of their interactions with medical students. The course addresses four important residents' teaching skills: (1) teaching learners with different learning styles, (2) providing constructive feedback, (3) teaching at the bedside, and (4) teaching psychomotor procedures.

INTD 4205. Veritas Mentors in Medicine Longitudinal Elective. 2 Credit Hours.
This is a longitudinal elective and the course work requirements will be for 2 week credit and must be complete by March 1st. Evaluation of MiM performance will include feedback from faculty mentors and students.

INTD 4210. School of Medicine Research Elective Level 1. 4 Credit Hours.
Medical research is multidisciplinary and broad in scope. Students will participate in basic, clinical research, quality improvement, or patient safety research projects under the supervision of faculty in the Health Science Center. The goal of this elective is to immerse students in a rich scholarly environment and provide an opportunity to work with research/faculty mentors to fully engage in a scholarly research process from writing the proposal to collecting the data to disseminating results. This elective is open to students who already have an established working relationship with a faculty member and wish to establish a new project, and for students who are in the MD-MPH degree program and MD with Distinction in Research Program. Interested students must submit a research elective application which includes the faculty mentor the student will work, to the office of UME, no later than 12 weeks before the research elective is to begin. Applications will be reviewed and confirmed or declined no later than 8 weeks prior to the proposed start date of the elective. Students will be able to 1) Formulate a research question and identify a research methodology to answer that question; 2) understand research ethics and apply an ethical approach to research design, implementation, and dissemination 3) design a research study and gather quality data; 4) apply and interpret basic biostatistics relevant to the individual research project; 5) write scientific reports. The supervising faculty member will evaluate the performance of the student using a standard, research specific, medical student evaluation form. Students will receive a Pass or Fail summative grade at the conclusion of the 4 week elective. Faculty will be expected to give the student formative feedback after two weeks to assist the student in meeting all expectations to pass the elective.

INTD 4211. School of Medicine Research Elective Level 2. 4 Credit Hours.
Medical research is multidisciplinary and broad in scope. Students will participate in basic, clinical research, quality improvement, or patient safety research projects under the supervision of faculty in the Health Science Center. The goal of this elective is to immerse students in a rich scholarly environment and provide an opportunity to work with research/faculty mentors to fully engage in a scholarly research process from writing the proposal to collecting the data to disseminating results. This elective is open to students who already have an established working relationship with a faculty member and reflects their increasing experience with the research process. INTD 4210 Level 1 elective or evidence of past experience knowledge and/or skills is a prerequisite. The expectation is that enrolled students will continue with research experiences begun in INTD 4210 Level 1 including students pursuing the MD-MPH degree and MD with Distinction in Research. Interested students must submit a research elective application which includes the faculty mentor the student will work, to the office of UME, no later than 12 weeks before the research elective is to begin. Applications will be reviewed and confirmed or declined no later than 8 weeks prior to the proposed start date of the elective.
INTD 4212. School of Medicine Research Elective Level 3. 4 Credit Hours.
Medical research is multidisciplinary and broad in scope. Students will participate in basic, clinical research, quality improvement, or patient safety research projects under the supervision of faculty in the Health Science Center. The goal of this elective is to immerse students in a rich scholarly environment and provide an opportunity to work with research/faculty mentors to fully engage in a scholarly research process from writing the proposal to collecting the data to disseminating results. Students enrolled in this course will have prior experience with research and ongoing research activities. As such, this elective is open to students who already have an established working relationship with a faculty member and reflects their increasing experience with the research process. INTD 4211 Level 2 electives is a prerequisite. As with INTD 4211 Level 2, the expectation is that enrolled students will continue with research experiences begun in INTD 4210 Level 1 and INTD 4211 Level 2 including students pursuing the MD-MPH degree and MD with Distinction in Research or produce evidence of past experience knowledge and/or skills which are deemed equivalent to these prerequisites. Interested students must submit a research elective application which includes the faculty mentor the student will work, to the office of UME, no later than 12 weeks before the research elective is to begin. Applications will be reviewed and confirmed or declined no later than 8 weeks prior to the proposed start date of the elective. Students will be able to formulate a research question and identify a research methodology to answer that question; understand research ethics and apply an ethical approach to research design, implementation, and dissemination; design a research study and gather quality data; apply and interpret basic biostatistics relevant to the individual research project; write scientific reports. The supervising faculty member will evaluate the performance of the student using a standard, research specific, medical student evaluation form. Students will receive a Pass or Fail summative grade at the conclusion of the 4 week elective. Faculty will be expected to give the student formative feedback after two weeks to assist the student in meeting all expectations to pass the elective.

INTD 5005. Core Course 1: Biochemistry. 2 Credit Hours.
Topics to be covered include: protein structure; properties of enzymes; structure, biosynthesis, and function of lipids; pathways and regulation of carbohydrate metabolism and biosynthesis and regulation of amino acids, nucleotides, and related compounds. Prerequisites: consent of instructor.

INTD 5007. Advanced Cellular And Molecular Biology. 4 Credit Hours.
This course provides an in-depth learning experience that instructs students on the fundamentals of molecular biology and cell biology as well as prepares the student to evaluate and design new research in the cutting-edge areas of modern molecular biology and cell biology. The course combines a didactic program of lectures along with a small group discussion format in which students interact closely with a group of faculty who have active research programs. The course focuses on active areas of research in molecular biology: Chromatin structure, DNA Transcription, DNA Replication and Repair, Recombination, RNA processing and regulation, Protein processing, targeting and degradation and in cell biology: Cell Signaling and Communication, Cell Growth, and Cell Death. Each week, the faculty provide students with didactic lectures on a current research area. Students and faculty will then jointly discuss key publications that serve to bridge the gap between the fundamental underpinnings of the field and the state of the art in that area.

INTD 5013. Perio/Pros/Endo/Orth Interdisciplinary Course 1. 1 Credit Hour.
A seminar that brings together the residents and graduate staff from the periodontic, prosthodontic, endodontic and orthodontic postdoctoral programs to share clinically relevant multidisciplinary information. Patient diagnostic evaluations and treatment plans are evaluated in an interactive environment. Selected topics involving new advancements are presented and discussed.

INTD 5020. Dental Biomed Core 1. 4 Credit Hours.
The Biomedical Core Course will provide a multidisciplinary approach to basic science instruction as it relates to the clinical practice of dentistry. Both basic science and clinical science faculty will participate to provide a sound base of material required by each program. Individual programs will supplement the Biomedical Core Course in the basic science areas particular to that discipline. This combination of core instruction with individual supplementation should provide the advanced education student the appropriate background in biomedical science.

INTD 5021. Dental Biomed Core 2. 1 Credit Hour.
This course is a continuation of MSDS 5020 Dental Biomedical Core Course 1.

INTD 5023. Research Ethics. 1 Credit Hour.
The goal of this course is to provide the Master’s student an opportunity to gain the essential standards necessary for training and education approved by the National Institute of Health. This course links to the web-based NIH Clinical Research Training On-Line Course http://www.cc.nih.gov/training/training/crt/infor.html for Principal Investigators that is required for all individuals conducting research. This course is open to current Health Science Center students. Open for Cross Enrollment on Space Available basis.

INTD 5030. Introduction To Patient Care. 5 Credit Hours.
The first component of this course is an informatics module so that students become familiar with their new computers and are trained on specific software. In the second and overlapping component, students are assigned to a variety of small-group rotations in a clinical setting to prepare them for patient-care activities. In the first semester, the students are required to become certified in basic life support. They also are required to rotate through a clinic orientation that is followed by a rotation as an assistant in the General Practice Groups. They are expected to follow proper infection control protocol and utilize some basic assisting skills. They also are required to rotate through a head and neck exam activity, followed with a patient activity in the second semester. Second semester activities also include intraoral radiography technique, a clinic component of their periodontics, and school-based prevention courses, a sealant lab and clinic, and radiographic interpretation. Students are evaluated primarily on professional development expectations.
INTD 5035. University Teaching Excellence Course. 2 Credit Hours.
The course is designed for post-doctoral fellows, senior graduate
students, faculty members, research staff and residents who are
interested in a career in teaching and desire to acquire knowledge about
learning processes and to develop educational planning, teaching and
assessment skills to enhance their teaching toolkit. UTEC participants
practice key skills needed for success in college-level teaching, working
individually and in teams to accomplish course objectives. Classes
will be supplemented by readings, worksheets and self-assessment
inventories. Although the course will provide instruction in contemporary
pedagogic techniques, it primarily emphasizes teaching science courses
for undergraduates on campuses at predominantly undergraduate
institutions (PUIs), rather than teaching graduate students and medical /
dental students at the health science center (HSC) or other academic
HSCs. Course instructors include faculty from the Schools of Medicine,
Dentistry and Nursing at UTHSCSA as well as visiting faculty from
local PUIs, St. Mary's University and Our Lady of the Lake University.
UTEC has been offered for two consecutive fall semesters now (2015
and 2016). It is sponsored by the San Antonio Biomedical Education
and Research (SABER) Program that is supported by an Institutional
Research and Academic Career Development Award (IRACDA) from the
National Institute of General Medical Sciences of the NIH (PHS grant, K12
GM11726).

INTD 5040. Fundamentals Of Neuroscience1: Molecular, Cellular, &
Developmental Neuroscience. 2 Credit Hours.
This course is intended to introduce students to a broad survey of the
basics of molecular, cellular and developmental neuroscience. The
course is organized into a series of three modules: biochemical and
cellular properties of nervous system cells, development of neuronal
systems, and neurotransmission and neuromodulation, which covers
the fundamentals of these three areas. Current topics and concepts are
discussed in discussion sessions that include student participation. Two
components; Neuroscience students register for both PHYL 5041 and
INTD 5040.

INTD 5043. Fundamentals Of Neuroscience 2: Systems Neuroscience. 3
Credit Hours.
This course, the second component of our broad survey of the basics
of neuroscience, begins at the level of the neural circuit, and guides the
students through an understanding of increasingly complex levels of
organization and function in the brain. Topics include neurotransmitter
systems, sensory and motor function, motivated behavior, regulation and
integration of autonomic, behavioral, and emotional responses in the
limbic system, higher order cognitive processes, and the neurobiological
basis underlying some important psychiatric disorders and their
treatment.

INTD 5046. Metanalysis In Cognitive Neuroimaging. 2.5 Credit Hours.
The objective of this course is to familiarize students with human
functional brain imaging methods, experimental designs, statistical
analyses, inferential strategies, and content. Students are guided through
a literature-based research project that culminates in a quantitative
metanalysis of a set of studies using similar tasks.

INTD 5047. Neuroanatomy. 2 Credit Hours.
The purpose of this course is to provide students with a practical working
knowledge of the structure of both the peripheral and central nervous
system. The emphasis will be on the organization of the human brain,
although the brains of other species may also be included if appropriate
for a specific brain region. The course will look at each of the individual
components of the central nervous system in some depth but will also
emphasize the complex integration of these various components into
a functional brain. The topics covered in the course are specifically
designed to mesh in time with those covered in Fundamentals of
Neuroscience 2 describing the function of these areas. For this reason, it
would be best if these two courses were taken concomitantly. The course
will be didactic with digital images, models, and wet specimens included
in the course.

INTD 5051. Research Methodology and Evidence-Based Practice. 2
Credit Hours.
This course is designed to introduce dental residents and faculty to
critical thinking, research methodology, and evidence-based practice
skills.

INTD 5064. Applied Statistics for Health Care Practitioners. 3 Credit
Hours.
This online course focuses on the application of descriptive and
inferential statistics in research studies. Students are expected to gain
knowledge and skills that will enable them to understand, interpret, and
evaluate statistical results; work with a consultant statistician; and use
software to enter, analyze, and summarize data. Course requirements
include homework assignments, online discussions and/or chats, and
periodic projects.

INTD 5066. Laughter is the Best Medicine: An Interdisciplinary Elective
about Humor, Healing, and Healthcare. 1 Credit Hour.
This class is a serious look at humor! The physiological and
psychological benefits of humor, as well as its therapeutic use with
patient interactions, will be explored. Students will learn how to develop
and improve their personal use of humor to combat burn out, through
techniques to enhance coping skills and stress reduction. Student
participation and interaction is integral to the content delivery.

INTD 5067. Introduction To Bioinformatics And Computational Biology. 2
Credit Hours.
The course will be taught by faculty from Biochemistry, Cellular &
Structural Biology, CCRI, Periodontics, and faculty from UTSA. The
course will be an introduction to methods and tools for working with DNA
sequences and protein families, learning basic Unix networking, overview
of numerical modeling, systems biology approaches to complex diseases,
gene expression analysis, bioinformatics in clinical research, statistical
tools for complex datasets, proteomics, structural methods for protein
biology, chemoinformatics, molecular modeling, and mathematical model
building.

INTD 5074. Topics In Translational Medical Product Development. 1
Credit Hour.
It is crucial to understand the intricate process of translating basic
research into market driven products, navigate the complex pathways of
intellectual property management and the regulatory affairs of agencies
such as the FDA. This course will offer students in biomedical sciences
the opportunity to integrate industry-relevant training and experience
with their basic science education. The course will explore the marketing
and regulatory process by which a biomedical product is developed and
brought to commercialization.
INTD 5075. Complementary Healthcare for the Clinician. Credit Hours.
The goal of this elective is to introduce future doctors to practices outside of the classical medical school curriculum that promote an evidence-based approach to wellness. This is so that the medical students of the UTHSC School of Medicine are informed about the reality, evidence and rumor surrounding a variety of commonly used alternative and supplementary healthcare practices. The of this class is not to make the student an expert in areas such as acupuncture or yoga, but to be well informed of the role of such practices as it relates to patient treatment and wellness. To this end, all the classes will have a practical component which will allow the students to experience the alternative modalities in a structured setting.

INTD 5081. Topics In Cardiovascular Research. 1 Credit Hour.
This course is designed to familiarize students with the current literature related to cardiovascular disease. Each week a different research topic selected from the recent literature is presented and discussed. Students are expected to attend and participate in the discussions. In addition, students are required to prepare and present once during the semester. A list of previous and current course presentations will be available online.

INTD 5082. Responsible Conduct of Research. 1.5 Credit Hour.
This foundational course introduces students to core ethical content necessary for responsible research conduct. Through interactive seminars, students will learn about (1) scientists as responsible members of society (contemporary ethical issues in biomedical research and environmental/social impacts of research), (2) policies for research with human subjects and vertebrate animals, (3) collaborative research, (4) conflicts of interest (personal, professional, financial), (5) data acquisition and laboratory tools (management, sharing, ownership), (6) responsible authorship and publication, (7) mentor/trainee responsibilities and relationships, (8) peer review, and (9) research misconduct (forms of misconduct and management policies).

INTD 5091. Special Topics. 1-4 Credit Hours.
This is a placeholder course, for which graduate students may register, if they are unable to select a specific track core course at the time of registration. Tracks are: Biology of Aging, Cancer Biology; Cell and Molecular Biology; Genetics, Genomics, & Development; Membrane Biology & Cell Signaling; Metabolism & Metabolic Disorders; Microbiology & Immunology; Molecular Biophysics & Biochemistry; Molecular, Cellular, & Integrative Physiology; Neuroscience; and Pharmacology. The course may be repeated for credit.

INTD 5094. Independent Study. 1-4 Credit Hours.
This elective allows for detailed in-depth study in a specific area of study. The area and mode of study are to be agreed upon by the student and instructor. The course may be repeated for credit when the area of study varies. Clock hours are to be arranged. Prerequisites: Graduate standing and consent of instructor.

INTD 6002. Ethics In Research. 0.5 Credit Hours.
This course covers topics relevant to ethics in scientific research. The course is taught on a case-study basis, dealing with real and hypothetical situations relevant to the conduct of scientific research. Topics discussed will include, but will not be limited to: data management, peer review, recognizing scientific misconduct, authorship, and The University of Texas regulations relevant to human and animal research. This course is required of all doctoral graduate students.

INTD 6007. Advanced Cell Biology. 2 Credit Hours.
This course provides an in-depth learning experience that instructs students on the fundamentals of cell biology as well as prepares the student to evaluate and design new research in the cutting-edge areas of modern cell biology. The course combines a didactic program of lectures along with a small-group discussion format in which students interact closely with a group of faculty who have active research programs. The course focuses on active areas of research in cell biology: Cell Signaling and Communication, Cell Growth, and Cell Death. Each week, the faculty jointly discuss key publications that serve the bridge the gap between the fundamental underpinnings of the field and the state of the art in that area. Students and faculty will then jointly discuss key publications that serve to bridge the gap between the fundamental underpinnings of the field and the state of the art in that area.

INTD 6008. Mitochondria & Apoptosis. 1 Credit Hour.
This course will focus on depth on Mitochondria and Apoptosis. Topics will include: Mitochondria and Respiration; Mitochondria and Reactive Oxygen Species; Mitochondria and Apoptosis. It will provide an opportunity for a unique learning experience where the student can prepare to evaluate and design new research in the cutting-edge areas of modern cell biology and molecular biology. Instead of a didactic program of lectures, the entire course comprises a small-group format in which students interact closely with a group of faculty who have active research programs. Each week, faculty will provide students with a brief overview of the research area. Students and faculty will then jointly discuss key publications that serve to bridge the gap between the student’s prior understanding of the field and the state of the art in that area.

INTD 6009. Advanced Molecular Biology. 2 Credit Hours.
This course provides an in-depth learning experience on the fundamentals of molecular biology as well as prepare the student to evaluate and design new research in the cutting-edge areas of modern molecular biology. The course combines a didactic program of lectures along with a small- group discussion format in which students interact closely with a group of faculty who have active research programs. The course focuses on active areas of research in molecular biology: Chromatin structure, Transcription, DNA Replication and Repair, Recombination, RNA processing and regulation, Protein processing, targeting and degradation. Each week, the faculty provide students with didactic lectures on a current research area. Students and faculty then jointly discuss key publications that serve to bridge the gap between the fundamental underpinnings of the field and the state of the art in that area.

INTD 6010. Evidence Based Dentistry. 1 Credit Hour.
Designed to help students establish an "evidence-based practice" the course will provide students the opportunity to learn the skills necessary to evaluate and select new dental products and clinical procedures. This requires an ability to read and evaluate various sources of knowledge, including articles published in the dental and medical literature, advertisements, Internet sources, and continuing education programs. Lectures and readings are designed to provide a basic understanding of clinical research, epidemiology, and statistical procedures such that dental journal articles and other sources of knowledge can be critically evaluated. The long-range goal is to prepare the student to think critically and to make sound judgments regarding the acceptance of new knowledge, products, and procedures in private practice.
INTD 6011. Introduction To Science Of Teaching. 1 Credit Hour.
This course will provide insight into the basic skills of learning and teaching. Faculty from the Academic Center for Excellence in Teaching and the Graduate School will provide the opportunity to learn the skills, strategies, and experiences for a future in academia and teaching. Topics include lecture presentations on why scientists choose to teach, planning a student learning experience in addition to developing a lecture syllabus, curriculum and teaching portfolio and philosophy. The course is recommended for Supervised Teaching Course INTD 6071.

INTD 6014. Perio/Pros/Endo/Orth Interdisciplinary Course 2. 1 Credit Hour.
This seminar brings together the residents and graduate staff from the periodontic, prosthodontic, endodontic and orthodontic postdoctoral programs to share clinically relevant multidisciplinary information. Patient diagnostic evaluations and treatment plans are evaluated in an interactive environment. Selected topics involving new advancements are presented and discussed.

INTD 6019. Pharmacotherapeutics. 1 Credit Hour.
This course is designed to review general principles of pharmacology; current and accepted pharmacotherapy for the medical management of pain, infection, and selected systemic diseases; and associated adverse drug events. It is based on the top 200 drugs dispensed by U.S. community pharmacies for the prevention, diagnosis, and/or treatment of disease with special reference to dentistry.

INTD 6033. Cell Signaling Mechanisms. 2 Credit Hours.
This course covers the molecular mechanisms of action of various extracellular mediators including hormones, neurotransmitters, growth factors, cytokines, etc., and cell signaling events. Several areas will be discussed including: (1) mechanisms of mediator synthesis; (2) interaction of mediators with specific receptors; (3) modulation by mediators of various second messenger systems including cyclic nucleotides, inositol phospholipids, calcium, protein phosphorylation, ion flux, etc.; and (4) intra- and intercellular mechanism for regulating mediator action. Open for Cross Enrollment on Space Available basis.

INTD 6040. Resident Lecture Series in Psychiatric Disorders and Psychopharmacology I. 1 Credit Hour.
This is an interdisciplinary advanced elective in which students attend 17 lectures from the Psychiatry Year One Residents’ lecture series. These lectures focus on the psychopathology, epidemiology, and pharmacological treatments for illnesses such as schizophrenia, anxiety disorders, trauma related disorders, eating disorders, and sleep disorders.

INTD 6043. Structure & Function Of Membrane Proteins. 2 Credit Hours.
This is a course targeted at students within any of the Graduate Tracks. The objective is to provide a broad view, allowing for in depth consideration in selected areas, of the structure and diverse functions of proteins within a membrane environment. Specific topics covered will include: ion selective channels, large membrane pores, membrane transporters, membrane pumps, and membrane receptors. The format of the course will be didactic lecture followed by student presentations of relevant topics. Open for Cross Enrollment on Space Available basis.

INTD 6045. Clinical Practicum In Neuroscience. 1 Credit Hour.
This course will provide students with a brief, but intense and very focused exposure to clinical practice in a relevant area of their choosing, designed and coordinated to best match their interests in close individual collaboration with a clinical mentor in one of the participating components: Neurosurgery, Neurology, Psychiatry, or Endodontics. Representative activities could include participation in case presentation and treatment planning, attending rounds with physicians and residents, direct observation of clinical procedures, patient interviews, follow-up care and outcome review. Potential venues may include inpatient psychiatric ward, sleep clinic, epilepsy clinic, stroke clinic, neurosurgical theater and surgical ICU. In consultation with the course director, students will first select one of the following sub-sections, then design their individually tailored clinical practicum experience with the coordinator for that section.

INTD 6046. Resident Lecture Series in Psychiatric Disorders and Psychopharmacology II. 1 Credit Hour.
This is an interdisciplinary advanced elective in which students attend lectures, selected from the full offering of weekly two-hour lectures comprising the Psychiatry Year One Residents’ lecture series. These lectures cover a range of topics, such as Substance Abuse, Depression, Bipolar Disorder, etc., all given from a clinical perspective.

INTD 6070. Teaching Excellence And Academic Skills (Texas). 1 Credit Hour.
This course, designed to assist graduate students and faculty in acquiring teaching skills, is composed of four modules, each covering a range of topics from lecture and clinical teaching to instructional development to assessing student achievement.

INTD 6088. Clinic Introduction. 4.5 Credit Hours.
The informatics module, one component of this course, is a continuation from the first-year module. Students continue training on a higher level of computer use. The clinic component of the course is a series of small-group rotations for distinct clinic modules including patient assessment, periodontics, caries detection, preventive methods, sealants, pulp testing, local anesthesia, oral surgery, radiographic technique recertification, radiographic interpretation, digital photography, constructing a stabilizing appliance, patient education, infant exam, and opportunities for assisting in various clinics with the Dental School at external sites. At the end of the sophomore year, students will have had the opportunity to become well acquainted with the clinic environment and techniques for initial patient visits scheduled for the summer clinic. Professional development expectations are emphasized in the overall evaluation.

INTD 6097. Research. 0.5-12 Credit Hours.
This course is intended for first-year IMGP students only. Students will be required to attend a minimum of 10 departmental (any) seminars during the semester and submit a 100-150 word synopsis of each seminar within two weeks of the seminar.
INTD 6115. Perio/Pros/Endo/Ortho Interdisciplinary Course 3. 1 Credit Hour.
This is a seminar that brings together the residents and graduate staff from the periodontic, prosthodontic, endodontic and orthodontic postdoctoral programs to share clinically relevant multidisciplinary information. Patient diagnostic evaluations and treatment plans are evaluated in an interactive environment. Selected topics involving new advancements are presented and discussed.

INTD 7002. Neurobiology Of Learning And Memory. 1 Credit Hour.
This course will focus on recent findings and topics related to the underlying aspects of the neural basis of learning and memory. Students will have the opportunity to learn about: molecular basis of memory formation, consolidation and retrieval, memory and emotion, associative learning, memory and amnesia, and recognition memory and the medial temporal lobe. The lectures will be interactive and driven by discussions of key journal articles. Each week the first hour will be reserved for lecturing and the second hour will be reserved for a discussion of a journal article.

INTD 7003. Elective in International Medicine. 4 Credit Hours.
This elective serves as a vehicle for students to participate in international medicine rotations. Students will work with a faculty sponsor to identify a program, either a pre-established site or a site discovered by the student which requires faculty approval. This elective includes: 1) The Center for Medical Humanities and Ethics International Scholars Program in India, a competitive program requiring a separate application through the department of Medicine, 2) Shoulder to Shoulder program in Latin America, which requires a separate application process and some cost (airfare and small project fee), and is available October, January, and April, 3) Programs in Nicaragua, Mexico, Panama, and Guatemala, and 4) Other sites available through online directory: http://www.globalhealth-cc.org/GHEC/Resources/GHonline.htm. All rotations share a commitment to service learning - medical education and self-reflection that arises out of service to needy populations. Students spend up to 4 weeks (or possibly longer) living in an international site and participating in the care of patients, under the supervision of local and visiting health care providers. The clinical settings and caseload will vary based on the location. There may be opportunities for patient education and emphasis on efforts of local empowerment, aiming to build up the communities in a sustainable way. Students will be expected to integrate themselves into the health care delivery system, and when possible, to strive to make an impact through community education and home visits. For certain Latin American sites, fluency in Spanish is a prerequisite. Students are encouraged to seek similar service learning experiences with underprivileged populations in San Antonio and Border communities prior to or after the rotation. End of rotation "reflection essays" are required and will serve to process student experiences.

INTD 7005. Indian Health Care Preceptorship. 4 Credit Hours.
This elective offers the opportunity for an experience in the health care of Native Americans, coordinated through the Indian Health Service. Most experiences involve both inpatient and outpatient care under direct supervision of board certified family physicians or internists. Educational activities such as conferences, teaching rounds, etc., may vary from site to site. All clinical sites are located outside the state of Texas, including sites in New Mexico, Arizona and Alaska. Early application is recommended. Students completing appropriate application forms may be reimbursed for transportation costs and provided room and board by the Indian Health Service.

INTD 7007. Literature and Medicine. 2 Credit Hours.
In this course you are required to read short stories, poems, and a book of nonfiction. While many of the stories or poems directly address medical or ethical issues, the primary purpose is not to enhance your store of knowledge in these areas, but to promote your appreciation of these works through discussions with other students (online via Blackboard and in class) and with authors and lecturers. Your own contributions to the course - not just the insights you've gained as medical students but the wisdom you bring to the class as human beings - will be critical to its success. We hope that the readings will help you prepare for and process your clinical experiences, furthering your development as a person as well as physician. There will be no "right" or "wrong" answers in this course; rather, our goal is to encourage thoughtful and serious responses to the readings and a lively and fulfilling conversation about them and the issues they raise. Students from Christian Medical College in Vellore, India, will join in our discussion online. MSIV students will receive two credits for completion of this longitudinal elective. All students are expected to participate in class discussions. Grades are earned by reading assignments, attendance at class meetings, and posting primary and secondary responses to posted discussion questions. Open for Cross Enrollment on Space Available basis.

INTD 7020. Clinical Patient Management. 5 Credit Hours.
This course is designed to help students develop skills in clinical behavioral dentistry through small group discussions, lectures, and routine patient treatment by application of the principles of coordinating patient care; communicating effectively with colleagues, staff, and faculty; and managing time, records, and environment. The students are required to manage their comprehensive care patients in the Junior Clinic following the principles presented in this course.

INTD 7074. Topics In Translational Medical Product Development. 1 Credit Hour.
It is crucial to understand the intricate process of translating basic research into market driven products, navigate the complex pathways of intellectual property management and the regulatory affairs of agencies such as the FDA. This course will offer students in biomedical sciences the opportunity to integrate industry-relevant training and experience with their basic science education. The course will explore the marketing and regulatory process by which a biomedical product is developed and brought to commercialization.

INTD 7091. Independent Studies. 1-9 Credit Hours.
Students will have the opportunity to use this course to study for the National Board, Part II examination, according to their own need. This course also will serve as a framework for a student returning from a leave of absence or from other protracted time away from classes or clinic. At the conclusion of the course, the enrolled student must demonstrate knowledge and/or skills and/or values consistent with the expectations for entering the level of course study from which the student left. An individualized course of study will be developed once the student is enrolled.