The discipline of pharmacology explores the mechanisms by which drugs cause biological effects. In the broadest sense, pharmacology is the study of how chemical agents, both natural and synthetic (i.e., drugs) affect biological systems. Research of the member of the Pharmacology track (currently 40 investigators) focuses in the areas of Neuropharmacology, Aging and Neurodegeneration, Autonomic and Endocrine Homeostasis, Pain Disorders, and Cancer Biology. All these areas are explored with an orientation towards drug development. A wide array of state-of-the-art methodologies including molecular, electrophysiological, neurochemical, genetics, imaging and behavioral techniques are employed. Pharmacology is often described as a bridge science because it incorporates knowledge and skills from a number of basic science disciplines, including physiology, biochemistry and cell and molecular biology. The interdisciplinary nature of the field offers pharmacologists a variety of research opportunities not found in other fields of scientific inquiry. It is this flexibility as well as the potential for the practical application of research (“translational research”) that attracts people into becoming pharmacologists.

Graduate studies in Pharmacology are currently administered through the Physiology and Pharmacology Discipline of the Integrated Biomedical Sciences Program of the Graduate School of Biomedical Sciences. The Physiology and Pharmacology Discipline is jointly administered by the Pharmacology department and the Cellular & Integrative Physiology department.

Courses

CSBL 3005. Advanced Anatomy. 0 Credit Hours.
Selected students will participate in lectures, detailed dissections, presentations, and teaching of Pre-Matriculation students in the gross anatomy laboratory. A special project or readings in the surgical anatomy literature will be assigned. This elective is considered to be a full-time commitment (40 hours per week). Students are expected to 1) attend all lectures given in the Pre-Matriculation program, 2) to teach in all scheduled laboratory sessions, 3) to prepare and present prosections, 4) to help prepare a laboratory examination, 5) to write and present a literature review on an original topic of interest to the student related to the region of the body being studied.

IBMS 6090. Seminar. 1.5 Credit Hour.
This course is required of all students in the IBMS program, except of those who have signed up for Final Hours. Students are required to attend a minimum of 16 seminars per semester and to complete a requirement to demonstrate their attendance and participation. To fulfill the minimum number of seminars, students may include seminars offered by disciplines other than their own in which they are enrolled. However, to enroll, students should obtain permission from the course Section Director affiliated with the appropriate discipline. The course numbers of the individual course sections are INTD 6090-1GEN, 6090-2BA, 6090-3CB, 6090-4CGM, 6090-5MIM, 6090-6MBB, 6090-7NS and 6090-8PP for the IBMS Disciplines: Biology of Aging (BA), Cancer Biology (CB), Cell Biology, Genetics & Molecular Medicine (CGM), Molecular Biophysics & Biochemistry (MBB), Molecular Immunology & Microbiology (MIM), Neuroscience (NS), and Physiology & Pharmacology (PP). Some students who have not declared a discipline, and have obtained the approval of their academic advisor and the Senior Associate Dean of the GSBS, may sign up for INTD 6090-1GEN. Grading will be Satisfactory or Unsatisfactory. A list of seminars from all disciplines will be posted on the Graduate School Web site. Each Section Director will determine, for the relevant IBMS-6090 section, the policy for tracking student’s attendance and participation in seminars.

IBMS 6097. Research. 0.5-12 Credit Hours.
This course is required of all students in the IBMS program, except of those who have signed up for Final Hours. Students are required to attend a minimum of 16 seminars per semester and to complete a requirement to demonstrate their attendance and participation. To fulfill the minimum number of seminars, students may include seminars offered by disciplines other than their own in which they are enrolled. However, to enroll, students should obtain permission from the course Section Director affiliated with the appropriate discipline. The course numbers of the individual course sections are INTD 6090-1GEN, 6090-2BA, 6090-3CB, 6090-4CGM, 6090-5MIM, 6090-6MBB, 6090-7NS and 6090-8PP for the IBMS Disciplines: Biology of Aging (BA), Cancer Biology (CB), Cell Biology, Genetics & Molecular Medicine (CGM), Molecular Biophysics & Biochemistry (MBB), Molecular Immunology & Microbiology (MIM), Neuroscience (NS), and Physiology & Pharmacology (PP). Some students who have not declared a discipline, and have obtained the approval of their academic advisor and the Senior Associate Dean of the GSBS, may sign up for INTD 6090-1GEN. Grading will be Satisfactory or Unsatisfactory. A list of seminars from all disciplines will be posted on the Graduate School Web site. Each Section Director will determine, for the relevant IBMS-6090 section, the policy for tracking student’s attendance and participation in seminars.

IBMS 6098. Thesis. 1-9 Credit Hours.
Registration for at least one term is required for M.S. candidates. Prerequisite: Admission to candidacy for the Master of Science degree is required.
IBMS 7001. Qualifying Exam. 1 Credit Hour.
The objective of the Qualifying Examination (QE) is to determine if a student has met programmatic expectations with regard to: i) Acquiring a level of scientific reasoning and a knowledge base in his/her field of study appropriate for a graduate student at the current stage of training; ii) Demonstrating skills of problem-solving and development of experimental strategies designed to test hypotheses associated with a specific scientific problem; and iii) Demonstrating the ability to defend experimental strategies proposed for solving scientific problems. Successful completion of the QE is required for Advancement to Candidacy and continuation in the IBMS Ph.D. program. During the Spring semester of Year 2 (4th semester overall) of the student’s program, the QE will be administered by a faculty committee approved by a student’s Discipline leadership. Each IBMS discipline will administer the QE process for its students so as to achieve the goals of the discipline while satisfying the expectations of the IBMS graduate program. In general, the QE requires the solving of a relevant unsolved problem in the biomedical sciences by writing a research proposal based on an idea conceived and developed by the student, followed by an oral defense of-proposal to explore the student’s problem-solving process, and the soundness of the student’s experimental design. Following the QE, a report will be submitted by the chair of the examination committee to the student’s discipline leadership indicating the outcome of the exam and any recommendations that may be required to foster further academic progress by the student. IBMS 7001 is divided into 7 modules overseen by the 7 IBMS Disciplines, each that is responsible for providing its students with a detailed description of the examination process, and for ensuring that the programmatic expectations and goals of the QE are met.

IBMS 7010. Student Journal Club & Research Presentation. 1-2 Credit Hours.
This course is designed to provide graduate students with experience in critical reading of the primary literature, seminar preparation and presentation, data analysis and interpretation, and group-based learning as they relate to the graduate program in Integrated Biomedical Sciences. This course is required of all students in the IBMS program starting in their second year except of those who have signed up for Final Hours. Students are required to attend a minimum of 16 total presentations per semester (journal club or research presentations) and to complete a requirement to demonstrate their attendance and participation. Students are also required to present one journal club presentation per semester until they are Advanced to Candidacy. Once Advanced to Candidacy, the student will present one journal club presentation per academic year and one research presentation per academic year such that the student is giving at least one presentation in each semester. To enroll, students should obtain permission from the course Section Director affiliated with the appropriate discipline. The course numbers of the individual course sections are INTD 7010-1GEN, 7010-2BA, 7010-3CB, 7010-4CGM, 7010-5MIM, 7010-6MBB, 7010-7NS and 7010-8PP for the IBMS Disciplines: Biology of Aging (BA), Cancer Biology (CB), Cell Biology, Genetics & Molecular Medicine (CGM), Molecular Biophysics & Biochemistry (MBB), Molecular Immunology & Microbiology (MIM), Neuroscience (NS), and Physiology & Pharmacology (PP). Some students who have not declared a discipline, and have obtained the approval of their academic advisor and the Senior Associate Dean of the GSBS, may sign up for INTD 6090-1GEN. Grading will be Satisfactory or Unsatisfactory. A list of seminars from all disciplines will be posted on the Graduate School Web site. Each Section Director will determine, for the relevant IBMS-6090 section, the policy for tracking student’s attendance and participation in seminars. Registration is only permitted following a student’s admission to candidacy for the PhD degree, approval of the dissertation research proposal and approval of the membership of the candidate’s Supervising Committee.

IBMS 7099. Dissertation. 1-12 Credit Hours.
This course is required of all students in the IBMS program, except of those who have signed up for Final Hours. Students are required to attend a minimum of 16 seminars per semester and to complete a requirement to demonstrate their attendance and participation. To fulfill the minimum number of seminars, students may include seminars offered by disciplines other than their own in which they are enrolled. However, to enroll, students should obtain permission from the course Section Director affiliated with the appropriate discipline. The course numbers of the individual course sections are INTD 6090-1GEN, 6090-2BA, 6090-3CB, 6090-4CGM, 6090-5MIM, 6090-6MBB, 6090-7NS and 6090-8PP for the IBMS Disciplines: Biology of Aging (BA), Cancer Biology (CB), Cell Biology, Genetics & Molecular Medicine (CGM), Molecular Biophysics & Biochemistry (MBB), Molecular Immunology & Microbiology (MIM), Neuroscience (NS), and Physiology & Pharmacology (PP). Some students who have not declared a discipline, and have obtained the approval of their academic advisor and the Senior Associate Dean of the GSBS, may sign up for INTD 6090-1GEN. Grading will be Satisfactory or Unsatisfactory. A list of seminars from all disciplines will be posted on the Graduate School Web site. Each Section Director will determine, for the relevant IBMS-6090 section, the policy for tracking student’s attendance and participation in seminars. Registration is only permitted following a student’s admission to candidacy for the PhD degree, approval of the dissertation research proposal and approval of the membership of the candidate’s Supervising Committee.

Courses

INTD 1091. Independent Study. 4 Credit Hours.
Students will work directly with a faculty advisor or assistant dean to develop an independent plan of study.

INTD 3001. International Elective. 0 Credit Hours.
Students will work with the course director and Assistant Director of Global Health to identify an appropriate international elective site, using established sites/programs or one that the student discovers on their own. All rotations must be vetted and approved by the course director and will adhere to a community service-learning model that is a structured educational experience combining community service with preparation and reflection. Students are expected to help shape the learning experience around community-identified needs and advance insight related to the context in which service is provided, the connection between service and academic coursework, and students’ roles as citizens and professionals. Students will spend 4 weeks living and working at an international service site. Sites may allow for a range of experiences, such as participating in patient care, conducting clinical or public health research, and/or participating in a language immersion program. There may also be opportunities for patient education and emphasis on efforts of local empowerment, aiming to build up the communities in a sustainable way. Regardless of the focus, all sites must be supervised by qualified health care providers. Students are encouraged to integrate themselves into the health care delivery system, to explore community needs that they could address, and when possible, to strive to make an impact through community education, home visits, and research. Reflection essays serve as a way to process experiences, including clinical cases, new perspectives gained, and analysis of health care disparities, and strategies for the overcoming poverty-related health problems. Students are encouraged to share their experiences upon return through a formal presentation.
INTD 3002. School of Medicine Research Elective. 0 Credit Hours.
Students will participate in basic or clinical research projects under the supervision of university faculty. The goal of this elective is to immerse students in a rich research environment and provide an opportunity to work with research mentors to fully engage in the research process from writing the proposal to collecting the data to disseminating research results. This elective is open to students who already have an established working relationship with a faculty member and who wish to continue their work, students who wish to establish a new project, and for students who are in the MD-MPH degree program and MD with Distinction in Research Program. Interested students must contact the course director prior to the enrollment date to express interest in the elective and receive further instructions on the application process for the research and identification/confirmation of the faculty mentor.

INTD 3030. Clinical Foundations. 3 Credit Hours.
The purposes of this completely on-line course are to: 1. Prepare early clinical students to increase knowledge in clinical settings including: a. Exposure to healthcare team members, b. Exposure to roles on clerkship (H&Ps, orders, SOAP notes, prescriptions, etc.), c. Interpretation of EKGs and radiographs, d. Interpretation of normal/abnormal lab values, e. Recognition of fatigue/strategies to combat fatigue in clinical settings, f. Basic understanding of ventilator management/ICU care, g. Patient insurance issues/patient health care financial resources, h. Avoidance of medical legal problems, i. Better success on exams, j. Performance of evidence-based searches in medical literature, k. Understanding fundamentals of translational research; 2. Assist students in developing new skills expected of early clinical students including: a. Intravenous catheter placement, nasogastric catheter placement, urinary catheter placement, and O2 management, b. Sterile gloving and sterile technique, c. Basic suturing/staple placement and removal; and 3. Prepare early clinical students for their roles in clinical settings including: a. Patient care under supervision, b. Patient privacy/HIPAA, c. Professionalism and responsibility to team and patients, d. Patient safety, e. Proper use of social media in patient care, f. Strategies to be best student on the first clerkship, g. OSHA and hand hygiene, h. Proper professional attire, i. Completion of evaluations on residents and faculty. The students will complete credentials for major clinical sites.

INTD 3058. Hospice and Palliative Medicine. 0 Credit Hours.
This rotation offers clinical experience in Hospice and Palliative Medicine (HPM). Palliative care provides treatment for seriously ill hospitalized and ambulatory patients and focuses on symptom management, enhancement of function, physical comfort, quality of life, psychosocial support, and communication about the goals of medical care for the patients as well as their families.

INTD 3091. Independent Study. 9 Credit Hours.
Students will work directly with a faculty advisor or assistant dean to develop an independent plan of study.

INTD 4007. Interprofessional Community Service Learning. 2 Credit Hours.
This is an innovative interdisciplinary service learning (CSL) course offered in partnership with the UT School of Pharmacy, PHR 270S, to allow medical students to integrate meaningful community service with instruction, preparation, and reflection to enrich the learning experience, teach civic responsibility, and strengthen communities. This course will provide the opportunity for students to examine social justice and social determinant of health issues and apply these principles in a structured serviced learning practicum. The student-led service learning project will address the social and health needs of a community partner and will be conducted with the partner agency in a culturally competent manner. Through online learning modules, readings, and discussion; monthly class sessions; a group service learning project; and a structured service learning practicum, this course combines community service with preparation and reflection to foster civic responsibility in the health professions. Open for Cross Enrollment on Space Available Basis.

INTD 4008. Interprofessional Care in HIV. 0.5 Credit Hours.
Students will have the opportunity to learn how to function as a member of an interprofessional team in HIV care management. The objective is for students to become familiar with issues of patient safety, health literacy, medication reconciliation, and interprofessional teamwork in HIV care. This is an elective didactic course.

INTD 4009. Interprofessional Care in HIV. 2 Credit Hours.
Students will have the opportunity to learn how to function as a member of an interprofessional team in HIV care management, and become familiar with issues of: patient safety, health literacy, medication reconciliation, treatment guidelines, and interprofessional teamwork in HIV care.

INTD 4015. Humanism in Medicine Fellowship. 2 Credit Hours.
This is a longitudinal 4th-year elective to support and nourish the inherent altruism of our students. This elective will bring together like-minded students and faculty who have a passion for caring for the medically underserved in their communities. The students will take a leadership role in managing and directing the student-run clinics at the Alpha Home, SAMM Transitional Living and Learning Center, Haven for Hope, Travis Park Dermatology (under faculty supervision). Clinical experiences will be at these clinics. This elective will include a few evening seminars throughout the year in which students and faculty meet to discuss social justice, how to start a free clinic, homelessness and topics chosen by the students. Every student will complete a project of their choice over the year.

INTD 4018. Independent Elective in Ethics. 2 Credit Hours.
In this longitudinal course, students will be required to undertake an independent study into a specific issue in medical ethics or medical humanities. Students will be required to read on research methods in medical ethics as well as literature in their issue of interest, and then to propose and conduct an original study project, a literature review, a position paper, or an ethical analysis of a particular topic or case. Students will be expected to write an academically rigorous final research report of 10 to 15 pages. Students will be encouraged to produce a final paper that can be submitted for publication in a peer-reviewed bioethics or medical humanities journal. Students will be required to meet with the instructor and/or chosen faculty advisor over the course for assistance, guidance, and discussion. (Center for Medical Humanities and Ethics).
INTD 4019. Clinical Ethics. 2 Credit Hours.
Students in this two-week course will have the opportunity to focus on work in clinical ethics consultation. The student will be required to participate in rounds as an ethicist, do in-depth reading on clinical ethics consultation, observe clinical ethics consults, attend ethics committee meetings, and provide an educational seminar to hospital staff on an issue of ethical significance.

INTD 4025. Healthcare Practice and Policy Elective. 0.5 Credit Hours.
The Healthcare Practice Elective is an introductory-level, discussion-based, eight-hour course targeted to fourth-year medical students. The course focuses generally on practice and policy issues of payment methodologies, cost-effectiveness, and access to care.

INTD 4030. Preparing for Global Health Work. 2 Credit Hours.
This is a 2-week multidisciplinary course for 4th-year medical students who are planning future global health experiences, arising in response to enormous interest in international medicine, with increasing numbers of students choosing to spend time overseas during medical school. This preparatory course aims to provide a foundation of practical knowledge in global health to optimize the students’ overseas experiences, facilitate their adaptation to working in different cultural settings, and maximize their impact in the communities where they serve. Topics include chronic and infectious disease, parasite infection, prioritizing community resources, health disparities, ethical dilemmas, cultural awareness, and professionalism. Course material is presented through a variety of approaches, including lectures, small-group case discussions, laboratory sessions, and online learning modules.

INTD 4045. Patient Notes- Enrichment Elective. 0 Credit Hours.
It is an interactive, inter-professional course that engages students in music listening sessions to teach students active listening skills. Through various forms of music, students will learn how to actively listen for specific details to gain insight on meaning, become comfortable with ambiguity and interpretation, and develop pattern recognition skills to quickly recognize deviation. Students will also develop stronger methodology for writing patients notes through conceptual practice of SOAP format notes for music pieces. Taught jointly by UTHSCSA faculty and professional musicians, this strategy of applying practical skills to an abstract concept such as music will refine these skills for students in clinical settings. Specifically, this course aims to improve interpersonal communication skills, and organizational note writing. This is also an opportunity for students to practice problems solving with other healthcare professionals.

INTD 4048. Art Rounds. 2 Credit Hours.
This is an interactive, interprofessional course that takes students to the McNay Art Museum to learn physical observation skills. Studies demonstrate that increased observational skills translate to improved physical examination skills. Using artwork as patients, students will have the opportunity to learn how to observe details and how to interpret images based on available evidence. Taught jointly by Health Science Center faculty and McNay museum educators, students will have the opportunity to develop and hone their observation, problem solving, and assessment skills. They will also observe, interpret, and give case reports on the original works of art to teach them the skill of verbalizing descriptions of what is seen, and not to accept assumptions made with a first impression. Open for Cross Enrollment on Space Available Basis.

INTD 4058. Hospice and Palliative Medicine Elective. 4 Credit Hours.
This rotation offers clinical experience in Hospice and Palliative Medicine (HPM). Palliative care provides treatment for seriously ill hospitalized and ambulatory patients and focuses on symptom management, enhancement of function, physical comfort, quality of life, psychosocial support, and communication about the goals of medical care for the patients as well as their families.

INTD 4103. Communication Skills. 0.5 Credit Hours.
To introduce fourth year medical students to the principles of conducting public interviews, presentations and effectively disseminating information to the communities they will serve.

INTD 4104. Improving Patient Outcomes. 0.5 Credit Hours.
This course is designed to increase a student’s knowledge of and skills in identifying systemic problems with health care delivery and patient safety, collecting and analyzing data, generating solutions, presenting results and evaluating peers. The course objectives include facilitating systems thinking, exposing students to the ACGME general competencies (with emphasis on practice-based learning and improvement and systems-based practice), increasing understanding of health care economics and working in teams.

INTD 4105. Medical Jurisprudence. 0.5 Credit Hours.
The course will center on the Texas Medical Practice Act and applicable federal laws.

INTD 4106. Practical Ethics For Healers. 0.5 Credit Hours.
The course is the capstone of the four-year longitudinal curriculum in humanities and ethics. The goals are to reflect upon 1) physician’s values, attitudes, and their intersection with cultural values and attitudes; 2) the historical and moral traditions of medicine in the context of society, politics, spirituality, and the health care system; and 3) the personal identity of a doctor. Open for Cross Enrollment on Space Available Basis.

INTD 4107. The Skin Around Us: A View of Skin Disease from a Humanities Perspective. 4 Credit Hours.
This elective is for fourth year medical students with a special interest in learning about skin diseases through a humanities perspective. Throughout the four week course, students will attend daily clinics, create a project and write an essay on activities encountered during the elective. The students will also complete brief writing assignments each week after watching videos, movies, and/or reading books.

INTD 4110. Getting Ready to Teach During Your Residency Program. 0.5 Credit Hours.
The goal of this 8-hour course is to help senior medical students, who will be residents in a few months, develop teaching skills that will enhance the quality of their interactions with students. The course will be conducted in an interactive workshop format to allow participants to practice important teaching skills for residents. These include 1) orienting and priming students to their responsibilities and roles and accepting the personal role of teacher and role model, 2) giving feedback to improve student performance, 3) helping students to improve their patient presentations—the use of questioning, and 4) coaching procedural and technical skills. The participants will practice these skills and receive feedback from their course peers and instructors based on the guidelines for clinical teachers in action with students and provide critiques. Large and small group discussions and role plays will be used to reinforce teaching principles.

INTD 4205. Veritas Mentors in Medicine Longitudinal Elective. 2 Credit Hours.
This is longitudinal elective and the course work requirements will be for 2 week credit and must be complete by March 1st. Evaluation of MiM performance will include feedback from faculty mentors and students.
INTD 4210. School of Medicine Research Elective Level 1. 4 Credit Hours.
Medical research is multidisciplinary and broad in scope. Students will participate in basic, clinical research, quality improvement, or patient safety research projects under the supervision of faculty in the Health Science Center. The goal of this elective is to immerse students in a rich scholarly environment and provide an opportunity to work with research/ faculty mentors to fully engage in a scholarly research process from writing the proposal to collecting the data to disseminating results. This elective is open to students who already have an established working relationship with a faculty member and who wish to continue their work, students who wish to establish a new project, and for students who are in the MD-MPH degree program and MD with Distinction in Research Program. Interested students must submit a research elective application which includes the faculty mentor the student will work, to the office of UME, no later than 12 weeks before the research elective is to begin. Applications will be reviewed and confirmed or declined no later than 8 weeks prior to the proposed start date of the elective. Students will be able to formulate a research question and identify a research methodology to answer that question; understand research ethics and apply an ethical approach to research design, implementation, and dissemination; design a research study and gather quality data; apply and interpret basic biostatistics relevant to the individual research project; write scientific reports. The supervising faculty member will evaluate the performance of the student using a standard, research specific, medical student evaluation form. Students will receive a Pass or Fail summative grade at the conclusion of the 4 week elective. Faculty will be expected to give the student formative feedback after two weeks to assist the student in meeting all expectations to pass the elective.

INTD 4211. School of Medicine Research Elective Level 2. 4 Credit Hours.
Medical research is multidisciplinary and broad in scope. Students will participate in basic, clinical research, quality improvement, or patient safety research projects under the supervision of faculty in the Health Science Center. The goal of this elective is to immerse students in a rich scholarly environment and provide an opportunity to work with research/ faculty mentors to fully engage in a scholarly research process from writing the proposal to collecting the data to disseminating results. This elective is open to students who already have an established working relationship with a faculty member and who wish to continue their work, students who wish to establish a new project, and for students who are in the MD-MPH degree program and MD with Distinction in Research Program. Interested students must submit a research elective application which includes the faculty mentor the student will work, to the office of UME, no later than 12 weeks before the research elective is to begin. Applications will be reviewed and confirmed or declined no later than 8 weeks prior to the proposed start date of the elective. Students will be able to formulate a research question and identify a research methodology to answer that question; understand research ethics and apply an ethical approach to research design, implementation, and dissemination; design a research study and gather quality data; apply and interpret basic biostatistics relevant to the individual research project; write scientific reports. The supervising faculty member will evaluate the performance of the student using a standard, research specific, medical student evaluation form. Students will receive a Pass or Fail summative grade at the conclusion of the 4 week elective. Faculty will be expected to give the student formative feedback after two weeks to assist the student in meeting all expectations to pass the elective.

INTD 4212. School of Medicine Research Elective Level 3. 4 Credit Hours.
Medical research is multidisciplinary and broad in scope. Students will participate in basic, clinical research, quality improvement, or patient safety research projects under the supervision of faculty in the Health Science Center. The goal of this elective is to immerse students in a rich scholarly environment and provide an opportunity to work with research/ faculty mentors to fully engage in a scholarly research process from writing the proposal to collecting the data to disseminating results. Students enrolled in this course will have prior experience with research and ongoing research activities. As such, this elective is open to students who already have an established working relationship with a faculty member and reflects their increasing experience with the research process. INTD 4211 Level 2 electives is a prerequisite. As with INTD 4211 Level 2, the expectation is that enrolled students will continue with research experiences begun in INTD 4210 Level 1 and INTD 4211 Level 2 including students pursuing the MD-MPH degree and MD with Distinction in Research or produce evidence of past experience knowledge and/or skills which are deemed equivalent to these prerequisites. Interested students must submit a research elective application which includes the faculty mentor the student will work, to the office of UME, no later than 12 weeks before the research elective is to begin. Applications will be reviewed and confirmed or declined no later than 8 weeks prior to the proposed start date of the elective. Students will be able to formulate a research question and identify a research methodology to answer that question; understand research ethics and apply an ethical approach to research design, implementation, and dissemination; design a research study and gather quality data; apply and interpret basic biostatistics relevant to the individual research project; write scientific reports. The supervising faculty member will evaluate the performance of the student using a standard, research specific, medical student evaluation form. Students will receive a Pass or Fail summative grade at the conclusion of the 4 week elective. Faculty will be expected to give the student formative feedback after two weeks to assist the student in meeting all expectations to pass the elective.

INTD 5005. Core Course 1: Biochemistry. 2 Credit Hours.
Topics to be covered include: protein structure; properties of enzymes; structure, biosynthesis, and function of lipids; pathways and regulation of carbohydrate metabolism and biosynthesis and regulation of amino acids, nucleotides, and related compounds. Prerequisites: consent of instructor.

INTD 5007. Advanced Cellular And Molecular Biology. 4 Credit Hours.
This course provides an in-depth learning experience that instructs students on the fundamentals of molecular biology and cell biology as well as prepares the student to evaluate and design new research in the cutting-edge areas of modern molecular biology and cell biology. The course combines a didactic program of lectures along with a small group discussion format in which students interact closely with a group of faculty who have active research programs. The course focuses on active areas of research in molecular biology: Chromatin structure, DNA Transcription, DNA Replication and Repair, Recombination, RNA processing and regulation, Protein processing, targeting and degradation and in cell biology: Cell Signaling and Communication, Cell Growth, and Cell Death. Each week, the faculty provide students with didactic lectures on a current research area. Students and faculty will then jointly discuss key publications that serve to bridge the gap between the fundamental underpinnings of the field and the state of the art in that area.
INTD 5013. Perio/Pros/Endo/Orth Interdisciplinary Course 1. 1 Credit Hour.
A seminar that brings together the residents and graduate staff from the periodontic, prosthodontic, endodontic and orthodontic postdoctoral programs to share clinically relevant multidisciplinary information. Patient diagnostic evaluations and treatment plans are evaluated in an interactive environment. Selected topics involving new advancements are presented and discussed.

INTD 5021. Dental Biomed Core 2. 1 Credit Hour.
This course is a continuation of MSDS 5020 Dental Biomedical Core Course 1.

INTD 5023. Research Ethics. 1 Credit Hour.
The goal of this course is to provide the Master's student an opportunity to gain the essential standards necessary for training and education approved by the National Institute of Health. This course links to the web-based NIH Clinical Research Training On-Line Course http://www.cc.nih.gov/training/training/crt/info.html for Principal Investigators that is required for all individuals conducting research. This course is open to current Health Science Center students. Open for Cross Enrollment on Space Available Basis.

INTD 5035. UTeach. 2 Credit Hours.
The course is designed for post-doctoral fellows, senior graduate students, faculty members, research staff and residents who are interested in a career in teaching and desire to acquire knowledge about learning processes and to develop educational planning, teaching and assessment skills to enhance their "teaching toolkit." UTeach (formerly University Teaching Excellence Course; UTEC) participants practice key skills needed for success in college-level teaching, working individually and in teams to accomplish course objectives. Classes will be supplemented by readings, worksheets and self-assessment inventories. Although the course will provide instruction in contemporary pedagogic techniques, it primarily emphasizes teaching science courses for undergraduates on campuses at predominantly undergraduate institutions (PUIs), rather than teaching graduate students and medical / dental students at the health science center (HSC) or other academic HSCs. Course instructors include faculty from the Schools of Medicine, Dentistry and Nursing at UTHSCSA as well as visiting faculty from local PUIs, St. Mary's University and Our Lady of the Lake University. UTeach has been offered for three consecutive fall semesters now (2015, 2016, 2017). It is sponsored by the San Antonio Biomedical Education and Research (SABER) Program that is supported by an Institutional Research and Academic Career Development Award (IRACDA) from the National Institute of General Medical Sciences of the NIH (PHS grant, K12 GM11726).

INTD 5040. Fundamentals Of Neuroscience 1: Molecular, Cellular, & Developmental Neuroscience. 2 Credit Hours.
This course is intended to introduce students to a broad survey of the basics of molecular, cellular and developmental neuroscience. The course is organized into a series of three modules: biochemical and cellular properties of nervous system cells, development of neuronal systems, and neurotransmission and neuromodulation, which covers the fundamentals of these three areas. Current topics and concepts are discussed in discussion sessions that include student participation. Two components; Neuroscience students register for both PHYL 5041 and INTD 5040.

INTD 5042. Fundamentals Of Neuroscience 2: Systems Neuroscience. 3 Credit Hours.
This course, the second component of our broad survey of the basics of neuroscience, begins at the level of the neural circuit, and guides the students through an understanding of increasingly complex levels of organization and function in the brain. Topics include neurotransmitter systems, sensory and motor function, motivated behavior, regulation and integration of autonomic, behavioral, and emotional responses in the limbic system, higher order cognitive processes, and the neurobiological basis underlying some important psychiatric disorders and their treatment.

INTD 5046. Metanalysis In Cognitive Neuroimaging. 2.5 Credit Hours.
The objective of this course is to familiarize students with human functional brain imaging methods, experimental designs, statistical analyses, inferential strategies, and content. Students are guided through a literature-based research project that culminates in a quantitative metanalysis of a set of studies using similar tasks.

INTD 5047. Neuroanatomy. 2 Credit Hours.
The purpose of this course is to provide students with a practical working knowledge of the structure of both the peripheral and central nervous system. The emphasis will be on the organization of the human brain, although the brains of other species may also be included if appropriate for a specific brain region. The course will look at each of the individual components of the central nervous system in some depth but will also emphasize the complex integration of these various components into a functional brain. The topics covered in the course are specifically designed to mesh in time with those covered in Fundamentals of Neuroscience 2 describing the function of these areas. For this reason, it would be best if these two courses were taken concomitantly. The course will be didactic with digital images, models, and wet specimens included in the course.

INTD 5051. Research Methodology and Evidence-Based Practice. 2 Credit Hours.
This course is designed to introduce dental residents and faculty to critical thinking, research methodology, and evidence-based practice skills.

INTD 5064. Applied Statistics for Health Care Practitioners. 3 Credit Hours.
This online course focuses on the application of descriptive and inferential statistics in research studies. Students are expected to gain knowledge and skills that will enable them to understand, interpret, and evaluate statistical results; work with a consultant statistician; and use software to enter, analyze, and summarize data. Course requirements include homework assignments, online discussions and/or chats, and periodic projects.

INTD 5066. Laughter is the Best Medicine: An Interdisciplinary Elective about Humor, Healing, and Healthcare. 1 Credit Hour.
This class is a serious look at humor! The physiological and psychological benefits of humor, as well as its therapeutic use with patient interactions, will be explored. Students will learn how to develop and improve their personal use of humor to combat burn out, through techniques to enhance coping skills and stress reduction. Student participation and interaction is integral to the content delivery.
INTD 5067. Introduction To Bioinformatics And Computational Biology. 2 Credit Hours.
The course will be taught by faculty from Biochemistry, Cellular & Structural Biology, CCRI, Periodontics, and faculty from UTSA. The course will be an introduction to methods and tools for working with DNA sequences and protein families, learning basic Unix networking, overview of numerical modeling, systems biology approaches to complex diseases, gene expression analysis, bioinformatics in clinical research, statistical tools for complex datasets, proteomics, structural methods for protein biology, chemoinformatics, molecular modeling, and mathematical model building.

INTD 5074. Topics In Translational Medical Product Development. 1 Credit Hour.
It is crucial to understand the intricate process of translating basic research into market driven products, navigate the complex pathways of intellectual property management and the regulatory affairs of agencies such as the FDA. This course will offer students in biomedical sciences the opportunity to integrate industry-relevant training and experience with their basic science education. The course will explore the marketing and regulatory process by which a biomedical product is developed and brought to commercialization.

INTD 5075. Complementary Healthcare for the Clinician. 0 Credit Hours.
The goal of this elective is to introduce future doctors to practices outside of the classical medical school curriculum that promote an evidence-based approach to wellness. This is so that the medical students of the UTHSC School of Medicine are informed about the reality, evidence and rumor surrounding a variety of commonly used alternative and supplementary healthcare practices. The of this class is not to make the student an expert in areas such as acupuncture or yoga, but to be well informed of the role of such practices as it relates to patient treatment and wellness. To this end, all the classes will have a practical component which will allow the students to experience the alternative modalities in a structured setting.

INTD 5081. Topics In Cardiovascular Research. 1 Credit Hour.
This course is designed to familiarize students with the current literature related to cardiovascular disease. Each week a different research topic selected from the recent literature is presented and discussed. Students are expected to attend and participate in the discussions. In addition, students are required to prepare and present once during the semester. A list of previous and current course presentations will be available online.

INTD 5082. Responsible Conduct of Research. 1.5 Credit Hour.
This foundational course introduces students to core ethical content necessary for responsible research conduct. Through interactive seminars, students will learn about (1) scientists as responsible members of society (contemporary ethical issues in biomedical research and environmental/social impacts of research), (2) policies for research with human subjects and vertebrate animals, (3) collaborative research, (4) conflicts of interest (personal, professional, financial), (5) data acquisition and laboratory tools (management, sharing, ownership), (6) responsible authorship and publication, (7) mentor/trainee responsibilities and relationships, (8) peer review, and (9) research misconduct (forms of misconduct and management policies).

INTD 5091. Special Topics. 1-4 Credit Hours.
This is a placeholder course, for which graduate students may register, if they are unable to select a specific track core course at the time of registration. Tracks are: Biology of Aging; Cancer Biology; Cell and Molecular Biology; Genetics, Genomics, & Development; Membrane Biology & Cell Signaling; Metabolism & Metabolic Disorders; Microbiology & Immunology; Molecular Biophysics & Biochemistry; Molecular, Cellular, & Integrative Physiology; Neuroscience; and Pharmacology. The course may be repeated for credit.

INTD 5094. Independent Study. 1-4 Credit Hours.
This elective allows for detailed in-depth study in a specific area of study. The area and mode of study are to be agreed upon by the student and instructor. The course may be repeated for credit when the area of study varies. Clock hours are to be arranged. Prerequisites: Graduate standing and consent of instructor.

INTD 6002. Ethics In Research. 0.5 Credit Hours.
This course covers topics relevant to ethics in scientific research. The course is taught on a case-study basis, dealing with real and hypothetical situations relevant to the conduct of scientific research. Topics discussed will include, but will not be limited to: data management, peer review, recognizing scientific misconduct, authorship, and The University of Texas regulations relevant to human and animal research. This course is required of all doctoral graduate students.

INTD 6007. Advanced Cell Biology. 2 Credit Hours.
This course provides an in-depth learning experience that instructs students on the fundamentals of cell biology as well as prepares the student to evaluate and design new research in the cutting-edge areas of modern cell biology. The course combines a didactic program of lectures along with a small-group discussion format in which students interact closely with a group of faculty who have active research programs. The course focuses on active areas of research in cell biology; Cell Signaling and Communication, Cell Growth, and Cell Death. Each week, the faculty jointly discuss key publications that serve to bridge the gap between the fundamental underpinnings of the field and the state of the art in that area. Students and faculty will then jointly discuss key publications that serve to bridge the gap between the fundamental underpinnings of the field and the state of the art in that area.

INTD 6008. Mitochondria & Apoptosis. 1 Credit Hour.
This course will focus in depth on Mitochondria and Apoptosis. Topics will include: Mitochondria and Respiration; Mitochondria and Reactive Oxygen Species; Mitochondria and Apoptosis. It will provide an opportunity for a unique learning experience where the student can prepare to evaluate and design new research in the cutting-edge areas of modern cell biology and molecular biology. Instead of a didactic program of lectures, the entire course comprises a small-group format in which students interact closely with a group of faculty who have active research programs. Each week, faculty will provide students with a brief overview of the research area. Students and faculty will then jointly discuss key publications that serve to bridge the gap between the student’s prior understanding of the field and the state of the art in that area.
INTD 6009. Advanced Molecular Biology. 2 Credit Hours.
This course will provide an in-depth learning experience on the
fundamentals of molecular biology as well as prepare the student to
evaluate and design new research in the cutting-edge areas of modern
molecular biology. The course combines a didactic program of lectures
along with a small- group discussion format in which students interact
closely with a group of faculty who have active research programs.
The course focuses on active areas of research in molecular biology:
Chromatin structure, Transcription, DNA Replication and Repair,
Recombination, RNA processing and regulation, Protein processing,
targeting and degradation. Each week, the faculty provide students with
didactic lectures on a current research area. Students and faculty then
jointly discuss Key publications that serve to bridge the gap between
the fundamental underpinnings of the field and the state of the art in that
area.

INTD 6011. Introduction To Science Of Teaching. 1 Credit Hour.
This course will provide insight into the basic skills of learning and
teaching. Faculty from the Academic Center for Excellence in Teaching
and the Graduate School will provide the opportunity to learn the skills,
strategies, and experiences for a future in academia and teaching.
Topics include lecture presentations on why scientists choose to teach,
planning a student learning experience in addition to developing a lecture
syllabus, curriculum and teaching portfolio and philosophy. The course is
recommended for Supervised Teaching Course INTD 6071.

INTD 6014. Perio/Pros/Endo/Orth Interdisciplinary Course 2. 1 Credit
Hour.
This seminar brings together the residents and graduate staff from the
periodontic, prosthodontic, endodontic and orthodontic postdoctoral
programs to share clinically relevant multidisciplinary information.
Patient diagnostic evaluations and treatment plans are evaluated in an
interactive environment. Selected topics involving new advancements are
presented and discussed.

INTD 6019. Pharmacotherapeutics. 1 Credit Hour.
This course is designed to review general principles of pharmacology;
current and accepted pharmacotherapy for the medical management
of pain, infection, and selected systemic diseases; and associated
adverse drug events. It is based on the top 200 drugs dispensed by U.S.
community pharmacies for the prevention, diagnosis, and/or treatment
of disease with special reference to dentistry.

INTD 6040. Resident Lecture Series in Psychiatric Disorders and
Psychopharmacology. 1 Credit Hour.
This is an interdisciplinary advanced elective in which students attend
17 lectures from the Psychiatry Year One Residents’ lecture series.
These lectures focus on the psychopathology, epidemiology, and
pharmacological treatments for illnesses such as schizophrenia, anxiety
disorders, trauma related disorders, eating disorders, and sleep disorders.

INTD 6041. Basic Science Resident Lecture Series In Neurology. 1.5
Credit Hour.
This is an interdisciplinary advanced elective in which students attend
20 lectures, selected from the full offering of daily one-hour lectures
comprising the Neurology Residents’ Basic Sciences lecture series.
These lectures cover a range of topics, such as Epilepsy, Movement
Disorders, the Thalamus, Parkinson's Disease, Alzheimer's Disease,
Stroke, Sleep, etc., all given from a clinical perspective. In addition,
graduate students will have the opportunity to observe or participate
in at least two enrichment activities related topically to the lectures
they attend, which may include such settings as case presentations,
diagnostic training sessions, or clinical observations, again selected from
the list of offerings included in the "Neurology Residents’ series.

INTD 6045. Clinical Practicum In Neuroscience. 1 Credit Hour.
This course will provide students with a brief, but intense and very
focused exposure to clinical practice in a relevant area of their choosing,
designed and coordinated to best match their interests in close
individual collaboration with a clinical mentor in one of the participating
components: Neurosurgery, Neurology, Psychiatry, or Endodontics.
Representative activities could include participation in case presentation
and treatment planning, attending rounds with physicians and residents,
direct observation of clinical procedures, patient interviews, follow-
up care and outcome review. Potential venues may include inpatient
psychiatric ward, sleep clinic, epilepsy clinic, stroke clinic, neurosurgical
theater and surgical ICU. In consultation with the course director,
students will first select one of the following sub-sections, then
design their individually tailored clinical practicum experience with the
coordinator for that section.

INTD 6046. Resident Lecture Series in Psychiatric Disorders and
Psychopharmacology II. 1 Credit Hour.
This is an interdisciplinary advanced elective in which students attend
lectures, selected from the full offering of weekly two-hour lectures
comprising the Psychiatry Year One Residents’ lecture series. These
lectures cover a range of topics, such as Substance Abuse, Depression,
Biopolar Disorder, etc., all given from a clinical perspective.

INTD 6070. Teaching Excellence And Academic Skills (Texas). 1 Credit
Hour.
This course, designed to assist graduate students and faculty in
acquiring teaching skills, is composed of four modules, each covering
a range of topics from lecture and clinical teaching to instructional
development to assessing student achievement.

INTD 6097. Research. 0.5-12 Credit Hours.
This course is intended for first-year IMGP students only. Students will be
required to attend a minimum of 10 departmental (any) seminars during
the semester and submit a 100-150 word synopsis of each seminar
within two weeks of the seminar.

INTD 6115. Perio/Pros/Endo/Ortho Interdisciplinary Course 3. 1 Credit
Hour.
This is a seminar that brings together the residents and graduate staff
from the periodontic, prosthodontic, endodontic and orthodontics
postdoctoral programs to share clinically relevant multidisciplinary
information. Patient diagnostic evaluations and treatment plans are
evaluated in an interactive environment. Selected topics involving new
advancements are presented and discussed.

INTD 7002. Neurobiology Of Learning And Memory. 1 Credit Hour.
This course will focus on recent findings and topics related to the
underlying aspects of the neural basis of learning and memory. Students
will have the opportunity to learn about: molecular basis of memory
formation, consolidation and retrieval, memory and emotion, associative
learning, memory and amnesia, and recognition memory and the medial
temporal lobe. The lectures will be interactive and driven by discussions
of key journal articles. Each week the first hour will be reserved for
lecturing and the second hour will be reserved for a discussion of a
journal article.
INTD 7003. Elective in International Medicine. 4 Credit Hours.
This elective serves as a vehicle for students to participate in international medicine rotations. Students will work with a faculty sponsor to identify a program, either a pre-established site or a site discovered by the student which requires faculty approval. This elective includes: 1) The Center for Medical Humanities and Ethics International Scholars Program in India, a competitive program requiring a separate application through the department of Medicine, 2) Shoulder to Shoulder program in Latin America, which requires a separate application process and some cost (airfare and small project fee), and is available October, January, and April, 3) Programs in Nicaragua, Mexico, Panama, and Guatemala, and 4) Other sites available through online directory: http://www.globalhealth-cc.org/GHEC/Resources/GHonline.htm. All rotations share a commitment to service learning - medical education and self-reflection that arises out of service to needy populations. Students spend up to 4 weeks (or possibly longer) living in an international site and participating in the care of patients, under the supervision of local and visiting health care providers. The clinical settings and caseload will vary based on the location. There may be opportunities for patient education and emphasis on efforts of local empowerment, aiming to build up the communities in a sustainable way. Students will be expected to integrate themselves into the health care delivery system, and when possible, to strive to make an impact through community education and home visits. For certain Latin American sites, fluency in Spanish is a prerequisite. Students are encouraged to seek similar service learning experiences with underprivileged populations in San Antonio and Border communities prior to or after the rotation. End of rotation "reflection essays" are required and will serve to process student experiences.

INTD 7005. Indian Health Care Preceptorship. 4 Credit Hours.
This elective offers the opportunity for an experience in the health care of Native Americans, coordinated through the Indian Health Service. Most experiences involve both inpatient and outpatient care under direct supervision of board certified family physicians or internists. Educational activities such as conferences, teaching rounds, etc., may vary from site to site. All clinical sites are located outside the state of Texas, including sites in New Mexico, Arizona and Alaska. Early application is recommended. Students completing appropriate application forms may be reimbursed for transportation costs and provided room and board by the Indian Health Service.

INTD 7007. Literature and Medicine. 2 Credit Hours.
In this course you are required to read short stories, poems, and a book of nonfiction. While many of the stories or poems directly address medical or ethical issues, the primary purpose is not to enhance your store of knowledge in these areas, but to promote your appreciation of these works through discussions with other students (online via Blackboard and in class) and with authors and lecturers. Your own contributions to the course - not just the insights you have gained as medical students but the wisdom you bring to the class as human beings - will be critical to its success. We hope that the readings will help you prepare for and process your clinical experiences, furthering your development as a person as well as physician. There will be no "right" or "wrong" answers in this course; rather, our goal is to encourage thoughtful and serious responses to the readings and a lively and fulfilling conversation about them and the issues they raise. Students from Christian Medical College in Vellore, India, will join in our discussion online. MSIV students will receive two credits for completion of this longitudinal elective. All students are expected to participate in class discussions. Grades are earned by reading assignments, attendance at class meetings, and posting primary and secondary responses to posted discussion questions. Open for Cross Enrollment on Space Available Basis.

INTD 7020. Clinical Patient Management. 5 Credit Hours.
This course is designed to help students develop skills in clinical behavioral dentistry through small group discussions, lectures, and routine patient treatment by application of the principles of coordinating patient care; communicating effectively with colleagues, staff, and faculty; and managing time, records, and environment. The students are required to manage their comprehensive care patients in the Junior Clinic following the principles presented in this course.

INTD 7074. Topics In Translational Medical Product Development. 1 Credit Hour.
It is crucial to understand the intricate process of translating basic research into market driven products, navigate the complex pathways of intellectual property management and the regulatory affairs of agencies such as the FDA. This course will offer students in biomedical sciences the opportunity to integrate industry-relevant training and experience with their basic science education. The course will explore the marketing and regulatory process by which a biomedical product is developed and brought to commercialization.

INTD 7091. Independent Studies. 1-9 Credit Hours.
Students will have the opportunity to use this course to study for the National Board, Part II examination, according to their own need. This course also will serve as a framework for a student returning from a leave of absence or from other protracted time away from classes or clinic. At the conclusion of the course, the enrolled student must demonstrate knowledge and/or skills and/or values consistent with the expectations for entering the level of course study from which the student left. An individualized course of study will be developed once the student is enrolled.

Courses

PHAR 4000. Special Topic. 1-42 Credit Hours.
This is a self-designed course created by both the student and the department to cover a specific topic. A Course Approval Form must be completed along with documentation of the designed course description.

PHAR 4003. Clinical Pharmacology. 4 Credit Hours.
This selective is an essential course in Drug Prescribing and Therapeutics for future interns in any specialty. It is an excellent opportunity to brush up on drug therapy before entering residency and to avoid causing harm to the patients through mis-prescription of drugs. The drugs of the major therapeutic areas and how they are used are reviewed by specialists from the Departments of Medicine, Psychiatry, Surgery, and Pharmacology. Particular emphasis is placed on the use of drugs in clinical scenarios.

PHAR 5013. Principles Of Pharmacology & Physiology 1. 3 Credit Hours.
Topics include principles of drug action; receptor classification and quantitation; dose response relationships; cellular mechanisms of drug action; fundamental concepts of drug receptor interactions; voltage gated and ion channels; drug actions mediate by transduction and non-transduction enzymes; time course of drug action; absorption, distribution, biotransformation and elimination of drugs; pharmacokinetics; and experimental approaches to drug action.
PHAR 5014. Integrative Physiology & Therapeutics. 4.5 Credit Hours.
This course provides students with a base of knowledge in physiology and pharmacology taking an integrative approach to understanding experimental and clinical therapeutics. Primary focus will be on understanding normal physiologic functions, cellular mechanism underlying disease, and systematic consideration of the pharmacology, clinical applications, and toxicities of the major classes of drugs. This required 4.5 credit hour course for Pharmacology and Physiology students is comprised of three sections, each covering major areas of physiology and pharmacology along with their corresponding therapeutics. The three sections include: 1) autonomic nervous system control and therapeutics, 2) cardiovascular, renal and respiratory physiology and therapeutics, and 3) metabolism, hormones, GI physiology and therapeutics. Each section is to be offered separately as an independent micro-elective for students from other programs within the Graduate School of Biomedical Science. Prerequisites: IBMS 5000 and PHAR 5013.

PHAR 5018. Cardiovascular, Renal and Respiratory Physiology and Therapeutics. 2 Credit Hours.
This course covers the anatomy, physiology and pharmacology of the heart, the blood vessels, kidneys, and airways and lungs. Specific areas include: 1) normal physiology of the cardiovascular system and mechanisms underlying its major pathologies such as atherosclerosis, hypertension, heart failure and stroke, as well as the major classes of drugs (antihypertensives, anti-lipemics, anti-anginals, and anticoagulants) to treat these primary cardiovascular disorders. 2) importance of the kidneys in maintaining body electrolyte and water balance, and examples of cardiovascular and kidney diseases that are targets for important therapeutic drugs such as the diuretics and ACE inhibitors. 3) respiratory physiology and drugs used in the treatment of asthma and chronic obstructive pulmonary disease. Prerequisites: IBMS 5000 or equivalent.

PHAR 5019. Metabolism, Hormones, GI Physiology and Therapeutics. 2 Credit Hours.
This course provides an overview of the following: 1) physiology of major endocrine systems, including pituitary, thyroid, GI and renal hormones, etc. It covers endocrine regulation of stress, blood sugar, male and female fertility, calcium balance, growth, pregnancy, and appetite. Pharmacological approaches to management of diseases caused by defects in metabolism (e.g. diabetes) and hormonal regulation (e.g. thyroid disorders), as well as sex steroids and adrenal steroids, will be discussed. 2) mechanisms and regulation of digestion/acid secretion and nutrient absorption by the GI tract along with pharmacological management of GI diseases, including GERD, peptic ulcer, etc. Prerequisites: IBMS 5000 or equivalent.

PHAR 5020. Basics Of Research Design. 2 Credit Hours.
This course aims at teaching first-year graduate students fundamentals of research design and analysis of scientific literature to orient them with setting up scientific experiments and writing grant proposals. The course is divided into three sections: research design, communicating scientific data, and getting scientific ideas funded.

PHAR 5021. Autonomic Control & Therapeutics. 0.5 Credit Hours.
This course covers basic anatomy, physiology and pharmacology of the autonomic nervous system, including its higher order CNS components of the ANS in the regulation of homeostasis. Diseases that involve alterations in ANS function and drugs that modulate catecholaminergic and cholinergic neuro-effector transmission will be discussed.

PHAR 5023. Drug Discovery and Development. 2.5 Credit Hours.
Drug Discovery and Development is a 2.5 credit hour course that provide students with an understanding of the overall process of drug discovery and development. It covers the basic principles of how new drugs are discovered, how drugs interact with their biological targets, and application of medicinal chemistry in lead optimization. Focused lectures on specific therapeutic areas will include drug development for cancer, diabetes, pain, and psychiatric disorders. Patenting, phase 1, 2 and 3 clinical trials, and marketing processes will be covered, as will contract opportunities for basic science researchers with drug companies. Case studies of both successful and unsuccessful drug candidates will be presented, where students will learn about the entire drug discovery and development process. Upon successful completion of this course, students will have a comprehensive knowledge of the fundamental principles of drug discovery and development, though to successful implementation of the new drug in the clinic. Prerequisite: IBMS 5000 or at the discretion of the course directors.

PHAR 5090. Seminar. 1-9 Credit Hours.
This course consists of presentation and discussion of recent advances in research by staff faculty, students, and outside scientists. A monthly journal club that emphasizes student presentations of current primary literature is also a component.

PHAR 5091. Special Topics: Microelectives. 0.5-9 Credit Hours.
Micro-electives are courses that can be of any type (tutorial or original literature review, short [2-week] didactic, technique, etc.). In general, since they are short, they are often offered at any time of convenience between the student(s) and the faculty. Various topics include but not limited to: (1) New Views on Monoaminergic Neurotransmission: Are Transporters Important?; (2) Drug Discovery: Nuts and Bolts; (3) Historical Perspectives of Receptor Theory; (4) Cell Membrane Microdomains and Signaling; (5) Neuropeptide Metabolism; (6) Serotonin: From Soup (Transmission) to Nuts (Behavior); (7) Central-Cardio-Respiratory Systems; (8) Neural Substrates of Regulatory Behaviors: Peptides and Monoamines; (9) Current Issues in Basic Research on Mechanisms of Epilepsy; (10) Appetite Control: Adiposity Hormones and Neuropeptides; (11) Fundamentals of Behavioral Pharmacology; (12) Therapeutics: Autonomic Pharmacology; (13) Therapeutics: Cardiovascular-Renal Pharmacology (Prerequisite - PHAR 5091.012); (14) Therapeutics: Central Nervous System Pharmacotherapeutics; (15) Therapeutics: Chemotherapy. (16) Therapeutics: Endocrine Pharmacology; (17) Therapeutics: Pharmacological Management of Pain; and (18) G protein-coupled receptor heteromers.

PHAR 5092. Special Problems In Pharmacology: Research Practicum. 1-9 Credit Hours.
This is a full-semester research experience for the principal investigator to evaluate if a student demonstrates the potential for productive and independent investigation during the summer following the first year. The course concludes with a 15 minute oral presentation given by the student and a written report in a journal style.
PHAR 6005. Drugs in Society. 3 Credit Hours.
This course will provide an overview of the basic neuropharmacology, preclinical pharmacology, epidemiology, as well as legal and social issues associated with alcohol and the major classes of abused drugs. The course will be team taught by several faculty members from the Departments of Pharmacology, Physiology, and Psychiatry. The format will include lectures, videos, and group discussion. The major drug classes that will be discussed include the following: 1) alcohol, benzodiazepines, and barbiturates; 2) nicotine (tobacco and other delivery systems); 3) marijuana and other cannabinoids; 4) opioids; 5) stimulant drugs including cathinones; 6) ketamine and related drugs; 7) hallucinogens; and 8) dietary supplements and over the counter medications. Readings will include scientific original and review articles, selected chapters in books (e.g., Drugs, Society, and Human Behavior, McGraw-Hill), as well as blogs and recent government and news agency publications as they become available and are relevant.

PHAR 6015. Effects, Power, Meta-Analysis. 1 Credit Hour.
Evaluating the statistical significance of research findings requires knowledge of statistics, but additional skills are needed to evaluate their importance. This course introduces tools that help answer three questions: 1) How do I assess the practical or everyday significance of my research results, 2) Does my study have sufficient power to find what I am seeking, and 3) How do I draw conclusions from past studies reporting disparate results. Answering these questions involves estimation of effect size, calculation of statistical power, and pooling of individual effect size estimates by meta-analysis. This course discusses these activities together, because they are interrelated. A well-designed study is normally based on a prospective power analysis, and a good power analysis will ideally be based on a meta-analytically derived mean effect size. There is a growing recognition by scientific journals and funding agencies of the need to report effect sizes along with the results of test of statistical significance and to quantify the statistical power of studies. The aim of this course is to help acquire the skills necessary to meet these needs. This micro-elective builds on the significance-testing and power analytic skills that students learn in CSAT 5095 Experimental Design and Data Analysis. Thus, having taken CSAT 5095 is a prerequisite for this course.

PHAR 6020. Molecular & Pharmacological Basis Of Therapeutics. 3 Credit Hours.
This course provides the graduate student with current knowledge of how genetic variants can affect drug response and the potential to optimize drug therapy. Course format will include lectures, discussion of selected literature, individual student presentations, and the opportunity for the development of a mini pharmacogenetic/genomic protocol and consent form to address a clinical/biomedical question mutually agreed upon between course director and students.

PHAR 6025. Molecular Pharmacology. 2 Credit Hours.
This course will be presented in a journal club/paper discussion format and will focus on the molecular aspects of pharmacology, with emphasis on molecular biology, biochemistry, and cell biology of a variety of physiological systems subjected to pharmacological manipulation. The topics to be discussed will include molecular mechanisms of drug action, signal transduction and regulation, molecular approaches, and recent advances in areas of molecular pharmacology.

PHAR 6027. Fundamentals Of Neuroethics. 1 Credit Hour.
Recent advances in neuroscience have considerably improved our understanding of brain function. However, the fascinating examination of brain's mysteries often intersects with the concerns of ethics and public policy. This course aims at presenting and discussing philosophical and scientific perspectives on major bioethical issues pertinent to neuroscience research. Several subjects will be covered in the course, including the effects of pharmacological and surgical interventions on the brain/min binomial, therapy versus enhancement, brain imaging and mental privacy, neurobiology of decision making, consciousness, unconsciousness, and death.

PHAR 6071. Supervised Teaching. 1-9 Credit Hours.
This course provides a mentored teaching experience. The student will be responsible for directing an undergraduate Physiology laboratory course under the guidance of the Physiology faculty. The student will prepare and provide limited lectures addressing background information required to understanding and performing research laboratories, as well as direct undergraduates in performance of these laboratories. Physiology faculty will insure that graduate students are prepared and knowledgeable about the laboratories they will direct. In addition, students will receive training in general pedagogy and specifically, in the performance, conduct, and directing of physiology research and its dissemination. In addition to learning to direct a laboratory course and providing lecture-based information, graduate students will be trained in preparing, administering, and marking laboratory exams.

PHAR 6097. Research. 0.5-12 Credit Hours.
Independent, original research under the direction of a faculty advisor.

PHAR 6098. Thesis. 1-12 Credit Hours.
Registration for at least one term is a Graduate School requirement for all MS candidates.

PHAR 7002. Bridging The Gap From Bench To Bedside: Pharmacology Clinical Practicum. 1 Credit Hour.
Pharmacology is the most basic of the science disciplines to bridge the gap between "bench and bedside." This micro-elective will provide students with focused exposure to therapeutics and clinical practice. The course will incorporate case-based, operating room scenarios using human simulator mannequins, with a clinical experience in association with the Department of Anesthesiology. Students must directly contact the course director before registering for this course.

PHAR 7003. Electrophysiology In Neuroscience Research. 1 Credit Hour.
The purpose of this course is to explore the rationale underlying the use of electrophysiological techniques in neuroscience research. Rather than focusing on the technical aspects of electrophysiology, this course will discuss current hot topic manuscripts that utilize different electrophysiological approaches including in vivo (anesthetized and conscious), in vitro, extracellular (single-unit and field potential), intracellular and patch. It is anticipated that at the end of the course students will be more familiar with the area of electrophysiology and able to understand why particular approaches are utilized in neuroscience research and be able to critically review electrophysiological data from manuscripts.

PHAR 7099. Dissertation. 1-12 Credit Hours.
Registration for at least two terms is a Graduate School requirement for all Ph.D candidates. Prerequisites: admission to candidacy for Doctor of Philosophy degree.
PHAR 8009. Pharmacotherapeutics. 2 Credit Hours.
The emphasis of this course is on understanding the rationale, indications, and contraindications for prescribing pharmacologic agents in dentistry. Consideration of the pharmacologic agents that the patient may be taking at the time of the dental visit is emphasized.

Courses

PHYL 3014. Research in Endocrinology of Aging. 0 Credit Hours.
The course consists of student participation in research on glucocorticoid-induced gene expression during aging and food restriction.

PHYL 3016. Ion Channel Research. 0 Credit Hours.
The course includes student participation in ongoing basic research on the molecular mechanisms of signaling pathways acting on ion channels. Techniques may include patch-clamp, electrophysiology, molecular biology and biochemistry.

PHYL 4000. Special Topic. 1-42 Credit Hours.
This is a self-designed course created by both the student and the department to cover a specific topic. A Course Approval Form must be completed along with documentation of the designed course description.

PHYL 4012. Molecular Endocrinology Research. 4 Credit Hours.
The course consists of student participation in research on glucocorticoid-induced gene expression during aging and food restriction.

PHYL 4016. Ion Channel Research. 4 Credit Hours.
The course includes student participation in ongoing basic research on the molecular mechanisms of signaling pathways acting on ion channels. Techniques may include patch-clamp, electrophysiology, molecular biology and biochemistry.

PHYL 5017. Discovery Of Physiological Principles 3. 2 Credit Hours.
This course consists of laboratory demonstrations and experiments in areas covered in Organ Systems Physiology 2 and acquisition of skills for analyzing and communicating the results of laboratory research. Corequisites: PHYL 5025.

PHYL 5025. Organ Systems Physiology 2. 4 Credit Hours.
This course is a continuation of the study begun in Organ System Physiology 1, of the mechanisms that produce and control the functions of the body's organ system. Prerequisites: PHYL 5011, PHYL 5014, PHYL 5021, and PHYL 5024.

PHYL 5028. Fundamentals of Physiology. 2 Credit Hours.
Fundamentals of Physiology is a 2 credit hour course designed to provide students with a basic understanding of mammalian physiology. Students will be exposed to overarching concepts and contemporary perspectives regarding the normal function (physiology) of the organs and systems of organs of the human body. Lectures will focus on fundamental functions of the cardiovascular, renal, respiratory, gastrointestinal and endocrine systems. This course aims to blend targeted student learning outcomes with critical thinking skills to enhance student understanding of integrative systems biology as an aid to success in the field of biomedical research. Upon successful completion of this course, students will have knowledge of physiological principles of individual organs and systems and a basic appreciation for how interactions between these systems integrate to subserve healthy function. This course is centered on the principle that doctoral students must take personal responsibility for their own learning. As an upper level course, all lectures will be interactive. Lectures will be built around assigned readings. Therefore, each student will be expected to actively engage with faculty and fellow students during lectures to facilitate and enhance the learning experience. Prerequisite: IBMS 5000 or at the discretion of the course directors.

PHYL 5030. Biology of Pain. 2 Credit Hours.
Biology of Pain is a 2.0 credit hour course that provide students with fundamentals of sensory transduction and pathways for pain. It covers the basic principles of how sensory neurons are regulated at the periphery as well as centrally, how pain is perceived in the brain and different therapeutic options of pain management. This course will be divided into specific lectures focused on neuronal and non-neuronal involvement, peripheral and central pathways of pain, assessment, pharmacology and treatment of pain as well as several important clinical states causing pain in various diseased conditions. Upon successful completion of this course, students will have a comprehensive knowledge of the core principles of physiology, basic biology and pharmacology of pain. Prerequisites: IBMS 5000 or at the discretion of the course directors.

PHYL 5041. Excitable Membranes. 1 Credit Hour.
This course addresses fundamental mechanisms of cell excitability in neurons and other excitable tissues. The format is a combination of lectures, readings, discussions, a laboratory demonstration, and online simulations (where available). Examples of the latter include activities to simulate the resting membrane potential and action potentials. The module will emphasize contemporary issues in the scientific literature as well as translational science where dysfunction in ion channels underlie common disorders such as Alzheimer’s Disease, Myasthenia Gravis, Cystic Fibrosis, Long QT Syndrome, and Epilepsy to name just a few. PHYL 5041 is a co-requisite for Fundamentals of Neuroscience I as it is the first module of that course, but it also can be taken as a standalone one-hour course.

PHYL 5042. Cardiovascular Physiology. 1 Credit Hour.
This course explores the physiological mechanisms by which the cardiovascular system carries out its principle function. Mechanisms that produce and regulate cardiac pumping, organ blood flow, capillary fluid and solute exchange, and arterial blood pressure are examined. The nature and importance of various local, neural, and hormonal mechanisms are emphasized. Integrated control of cardiovascular function in situations requiring cardiovascular adjustments (e.g., exercise, blood pressure alterations) are also covered. Students may take the full series but are only required to take three out of the four courses (PHYL 5041, 5042, 5043, and 5044).

PHYL 5043. Respiratory & Renal Physiology. 1 Credit Hour.
This course covers the physiology of respiratory and renal function in the human body. Our focus is on basic mechanisms of function, role in body homeostasis, as well as dysfunction of both systems associated with pulmonary and renal disease. Two sessions are set aside for discussion around significant advances in each field. One or more recently published articles will serve as the focus for each of these discussions sessions. Students may take the full series but are only required to take three out of the four courses (PHYL 5041, 5042, 5043, and 5044).

PHYL 5044. Metabolism/Hormones/GI System. 1 Credit Hour.
The course serves to expose students to the current state of knowledge in the field of endocrinology and metabolism, including reproductive physiology, and the related topics of the physiology of the digestive tract. Three sessions are assigned to advanced topics. In these three sessions students will engage in a discussion format centered around one recent important publication. The lecturer will lead the discussion with the aim of showing how the topics the students have been exposed to integrate one with another, providing the context for present-day discoveries.
PHYL 5045. Mammalian Physiology. 4 Credit Hours.
The course begins with fundamental processes that govern membrane transport, membrane potential, and excitation-contraction coupling. The course then proceeds to coverage of organ system function including cardiovascular, respiratory, renal, gastrointestinal and endocrine/metabolic physiology. Lecture material is enhanced by supplemental discussion of research literature encompassing molecular biology, integrative function, and pathophysiological implications. Students may take the full course but are only required to take three out of the four modules (PHYL 5041, 5042, 5043, and 5044).

PHYL 6020. Regulation of Glucose Metabolism. 3 Credit Hours.
The normal regulation of glucose metabolism will be reviewed integrating whole body, organ, cellular, and molecular control mechanisms. Dysregulation of these control mechanisms in diabetes and other common metabolic disorders such as obesity and the metabolic syndrome will be examined in detail. State of the art in vivo and in vitro techniques essential for the study of normal and deranged glucose homeostasis will be discussed in depth. Diabetic microvascular (nephropathy, retinopathy, neuropathy) and macrovascular complications and their relationship to impaired glucose metabolism will be reviewed. Lastly, pharmacologic therapy of diabetes and its associated complications will be discussed.

PHYL 6071. Supervised Teaching. 1 Credit Hour.
A student enrolled in this course is expected to participate in the teaching program of the Department.

PHYL 6090. Seminar. 1 Credit Hour.
The course is comprised of research presentations by Physiology graduate students. This course is required of all students each semester.

PHYL 6091. Selected Topics Of Physiology. 2 Credit Hours.
Students must take at least two courses selected from among the offerings in: (1) Cardiovascular; (2) Cell Biology in Neural Science; (3) Endocrine and Metabolism; (4) Molecular Physiology; and (5) Ion Channels in Disease. Courses that may be substituted for one of these selections: (1) INTD 5040 - Fundamentals of Neuroscience I: Molecular, Cellular, and Developmental Neuroscience; (2) INTD 5043 - Fundamentals of Neuroscience II: Systems Neuroscience; (3) CSBL 6048 - Biology of Aging; and (4) CSBL 6058 - Neurobiology of Aging. Not all selected topics are offered each semester. Please discuss this with the Academic Coordinator for more details. Substituted courses in conflict with Physiology course schedule will require approval from COGS.

PHYL 6097. Research. 1-12 Credit Hours.
If a track chooses to give a seminar course, the specific course requirements will be determined by the track. The sub-designations for each track are: (1) Biology of Aging; (2) Cancer Biology; (3) Cell & Molecular Biology; (4) Genetics, Genomics & Development; (5) Membrane Biology & Cell Signaling; (6) Metabolism & Metabolic Disorders; (7) Microbiology & Immunology; (8) Molecular Biophysics & Biochemistry; (9) Molecular, Cellular, & Integrative Physiology; (10) Neuroscience; and (11) Pharmacology.

PHYL 6098. Thesis. 1-12 Credit Hours.
Registration for at least one term is required of M.S. candidates. Prerequisite: admission to candidacy for Master of Science degree.

PHYL 6291. Seminar 2. 1 Credit Hour.
Presentation and discussion of recent research advances by outside scientists.

PHYL 7099. Dissertation. 1-12 Credit Hours.
Registration for at least two terms is required of Ph.D. candidates. Prerequisites: admission to candidacy for the Ph.D. degree.