Cell Biology, Genetics & Molecular Medicine

Courses

BIOC 6033. Cell Signaling Mechanisms. 2 Credit Hours.

This course covers the molecular mechanisms of action of various extracellular mediators including hormones, neurotransmitters, growth factors, cytokines, etc., and cell signaling events. Several areas will be discussed including: (1) mechanisms of mediator synthesis; (2) interaction of mediators with specific receptors; (3) modulation by mediators of various second messenger systems including cyclic nucleotides, inositol phospholipids, calcium, protein phosphorylation, ion flux, etc.; and (4) intra- and intercellular mechanism for regulating mediator action. Open for Cross Enrollment on Space Available Basis.

BIOC 6036. Macromolecular Structure & Mechanism. 2 Credit Hours.

This course will cover the fundamentals of protein and nucleic acid structure and of enzyme catalysis. The course is required of students in the Molecular Biochemistry and Biophysics Track. Topics to be covered include: DNA and RNA structure, protein structure, protein folding, ligand binding by proteins, and enzyme catalysis. Open for Cross Enrollment on Space Available Basis.

BIOC 6037. Integration Of Metabolic Pathways. 2 Credit Hours.

The course is required of students in the Molecular Biophysics and Metabolic Pathways track. The objective is to provide an understanding of the individual reactions in intermediary metabolism and how the reactions are integrated by regulatory mechanisms. Topics include carbohydrate, lipid, and nitrogen metabolism and mechanisms of regulation of individual enzymes and metabolic pathways. Open for Cross Enrollment on Space Available Basis.

BIOC 6043. Structure & Function Of Membrane Proteins. 2 Credit Hours.

This is a course targeted at students within any of the Graduate Tracks. The objective is to provide a broad view, allowing for in depth consideration in selected areas, of the structure and diverse functions of proteins within a membrane environment. Specific topics covered will include: ion selective channels, large membrane pores, membrane transporters, membrane pumps, and membrane receptors. The format of the course will be didactic lecture followed by student presentations of relevant topics. Open for Cross Enrollment on Space Available Basis.

CSAT 5007. Methods In Cell Biology. 1 Credit Hour.

Through a combination of lectures and demonstrations, the instructors will introduce students to techniques which are currently being used in cellular biology laboratories. The emphasis will be on the applications themselves, their uses, limitations, and the necessary controls. The following topic areas will be covered: imaging and microscopy, immunological techniques, bioinformatics (DNA and protein), rodent anatomy and histology, cytogenetics, and in vitro cell growth and transfection. Course fees: $100.

CSAT 5023. Development. 1 Credit Hour.

The course provides a survey of concepts in developmental biology (induction, cell-cell interactions, morphogen gradients, morphogenetic movements, transcription regulation, organogenesis) using experimental examples from both invertebrate and vertebrate embryos. The first set of lectures will focus on gametogenesis, fertilization, and early developmental events, such as cleavage, midblastula transition, gastrulation, and axis formation. The second set of lectures will explore the fates of germ layers in the contexts of cell type-specific differentiation and cell-cell interactions during organogenesis.

CSAT 5024. RNA Biology and Genomics II. 1 Credit Hour.

The challenges of controlling RNA viruses, the promise of RNA vaccines and the recent findings on the roles of ncRNAs and RNA binding proteins in human disease highlight the importance of studying RNA biology. This course, coupled with MMED 6001, covers all aspects of RNA expression and metabolism, such as RNA processing, decay, transport, alternative splicing and translation and, the function of RNA binding proteins and non-coding RNAs. We will also discuss recent discoveries, such as RNA vaccines, RNA granules, RNA modification, the impact of RNA mediated processes in metabolic syndrome, neurodegenerative diseases and cancer and, RNA therapeutics. Another important goal of these courses is to teach students to employ omics methods such as RNA-seq, RIP-Seq, BRIC, CLIP, Ribo-seq, and CRISPR to study these processes and their regulators. This includes hands-on training on biological databases and classes covering examples of the use of genomics. We expect students to acquire skills that will help them visualize how RNA genomics can be used in their own research projects. Open for Cross Enrollment on Space Available Basis.

CSAT 5025. Genetics. 1 Credit Hour.

This course is designed to provide an overview of genetic research. Topics to be covered include: cytogenetics, mitochondrial genetics, cancer genetics, linkage analysis, complex traits, population genetics, animal models, sex determination, and epigenetics.

CSAT 5077. Scientific Writing. 2 Credit Hours.

This course will provide students with the opportunity to develop skills in scientific writing and the presentation of research results. It will emphasize learning-by-doing-and-re-doing. Students will be required to write something every week. The capstone project for students will be to write a grant proposal and defend it in front of the class. One hour per week will be devoted to lecture and critique of published work; the other hour will consist of critique and revision of student writing by other students, as well as by the course director. Topics to be covered include: (1) fundamentals of writing clearly, (2) principles of revision, (3) effective presentation of data, (4) fundamentals of oral presentation, (5) writing/presenting to the appropriate audience, (6) how to write background/introductory sections, (7) how to write materials and methods, (8) how to write the discussion section, and (9) how to constructively critique one's own and others writing.

CSAT 5083. Practical Optical Microscopy. 1 Credit Hour.

This course will be a one-hour elective for graduate students consisting of eight (8) one-hour lectures plus eight (8) one-hour laboratories. The course focuses on the practical aspects of using optical microscopes. The objectives are to teach students the fundamental principles of optical microscopy and to provide them with hands-on experience using the optical instrumentation in the Institutional Imaging Core.

CSAT 5089. Graduate Colloquium. 2 Credit Hours.

This course is designed to provide graduate students with training in evaluating the scientific literature and in presentation of research in a seminar or journal club format. The course will focus on critical thinking, including evaluation of existing literature, interpretation of experimental results, and comparison of alternative models and interpretations. These tools are essential both for oral presentations and for writing grant proposals and manuscripts. Emphasis will be placed on evaluation of the science, organization of the manuscript, and on oral presentation skills.

CSAT 5095. Experimental Design And Data Analysis. 3 Credit Hours.

The purpose of the course is to provide an introduction to experimental design and statistical analysis. The emphasis of the course will be on the selection and application of proper tests of statistical significance. Practical experience will be provided in the use of both parametric and nonparametric methods of statistical evaluation. Among the topics to be covered are: data reduction, types of distributions, hypothesis testing, scales of measurement, chi square analysis, the special case of the comparison of two groups; analysis of variance; a posteriori multiple comparisons tests, tests of the assumptions of parametric analyses, advanced forms of the analysis of variance, linear regression, and correlation analysis. This course involves the use of statistical software; therefore, access to a laptop or a computer with web access for classes and examinations is required.

CSAT 6005. Rigor & Reproducibility. 1 Credit Hour.

This course will focus on two of the cornerstones of science advancement, which are rigor in designing and performing scientific research and the ability to reproduce biomedical research findings. The course will also emphasize the application of rigor that ensures robust and unbiased experimental design, methodology, analysis, interpretation, and reporting of results. The notion that when a result can be reproduced by multiple scientists, it validates the original results and readiness to progress to the next phase of research will be covered in this course. This is especially important for preclinical studies that provide the basis for rigorous clinical trials in humans. In recent years, there has been a growing awareness of the need for rigorously designed published preclinical studies, to ensure that such studies can be reproduced. The aim of this course is to help attendees acquire the skills necessary to meet the need to enhance rigor and reproducibility in preclinical scientific research. Successful completion of CSAT 5095, or an equivalent approved by the Rigor & Reproducibility course director, is a prerequisite for this course.

CSAT 6021. Animal Models. 3 Credit Hours.

The relevant biology, applicability, and practical use of a number of animal models to biomedical research is covered. Invertebrate (e.g., C. elegans) and vertebrate (e.g., fish and rodents) model systems are included in the course. Strengths and weaknesses of each organism that render them particularly valuable as animal models are emphasized. Experimental approaches and tools that are utilized in conjunction with each animal model are rigorously examined. The course is taught from primary scientific literature using classic historical publications and recent publications.

CSAT 6049. Cellular and Molecular Mechanisms of Aging. 2 Credit Hours.

This course provides up-to-date information on the current understanding of cellular and molecular mechanisms that contribute to aging. The focus is on investigation of specific mechanisms of aging including oxidative stress, nutrient sensing signaling pathways, stem cells and senescence, and genome stability. Experimental design and analysis, including pros and cons of approaches used to gain knowledge and how to appropriately interpret data, will be discussed throughout the course. The relationship between age-related changes in function and potential contributions age associated diseases will be examined via recently published research.

CSAT 6050. Aging and Longevity Mechanisms. 2 Credit Hours.

This module will focus on and evaluate several approaches used to modulate longevity and how these are used to discover the genetic, physiological and intracellular foundation of aging processes. The course will consist of interactive lectures complemented by guided reading of currently research papers. Students will be taught to hone critical reading skills and develop testable hypotheses to carry research forward. Topics will include: Genetics of Aging, Exceptional Longevity, Pharmacological Interventions, Calorie Restriction, Healthspan and Pathology of Aging.

CSAT 6059. Stem Cells & Regenerative Medicine. 1 Credit Hour.

The fields of stem cells and regenerative medicine are rapidly evolving and have great potential to change the way medicine is practiced. This course will encompass topics from basics of tissue specific stem cell biology to pre-clinical animal models, strategies and progress in regenerative medicine. We will discuss some of the most current research being done in regenerative medicine from stem cell transplantation to biomaterials. Prerequisite: IBMS 5000.

CSAT 6068. Cancer Biology Core 1: An Introductory Course. 1.5 Credit Hour.

This team-taught course will provide an introduction to molecular oncology with a focus on defining cancer and key molecular/cellular changes often associated with the development of cancer. The goal of the course is to provide the student with a solid background in general cancer biology. This course requires a strong background in basic cellular processes, such as those covered in IBMS 5007. These processes will be discussed with regard to how they are altered in cancer and whether such differences from normal biology offer a therapeutic opportunity to target cancer. Tumorigenesis is a multi-step process driven by genetic, epigenetic and metabolic/environmental changes that occur over time. Although cancer is a heterogeneous disease, many human tumors exhibit similar acquired physiological features. This course will cover the underlying molecular and cell biology mechanisms involved in carcinogenesis, tumor growth, and metastasis at a basic level. The implications of these biological findings on cancer prevention, diagnosis, and treatment will also be introduced. Upon completion of the class, students should have a general understanding of the mechanisms by which tumors gain and maintain a growth advantage as well as an initial handle on potential therapeutic targets. This course is meant to be the basic introduction/foundation for CSAT 6069, Cancer Biology Core 2; Advanced Cancer Biology. Open for Cross Enrollment on Space Available Basis.

CSAT 6069. Cancer Biology Core 2; Advanced Cancer Biology. 2.5 Credit Hours.

This course is designed to provide a detailed representation of cancer biology, from progression, standard of care and molecular alterations that drive recent diagnoses and therapeutic strategies. In addition, this course will offer an overview on special populations affected by cancers and models used in the investigation of cancer. Included are basic experimental methods, mouse models, ex vivo systems, molecular profiling and clinical trials. The conceptual notions on clinical trials of cancer drugs and the process of development of novel therapeutic drugs in cancer will be discussed. Required for Cancer Biology Discipline. Prerequisites: INTD 5007 (or INTD 6007 and INTD 6009) and CSAT 6068.

CSAT 6071. Supervised Teaching. 1-12 Credit Hours.

This course consists of participation in the teaching program of the first-year medical, dental, or health professions curriculum. Semester hours vary depending on the time spent in teaching.

CSAT 6074. Molecular Aspects Of Epigenetics. 2 Credit Hours.

The purpose of this course is to develop an understanding of the molecular aspects of epigenetics. This advanced course will be a unique learning experience that prepares the student to evaluate and design new research in the areas of epigenetic processes including imprinting, gene slicing, X chromosome inactivation, position effect, reprogramming, and the process of tumorigenesis. This module concerns epigenetic mechanisms. Topics include: DNA methylation, histone modifications, epigenetics and stem cells, cancer epigenetics, RNA interference and epigenetics, bioinformatics and epigenetics, and translational epigenetics. This course will include a didactic program and student discussion. For the student discussion module, faculty and students will jointly discuss key publications that serve to bridge the gap between the student's prior understanding of the field and the state of the art in that area.

CSAT 6095. Analysis and Visualization of Genomic Data. 2 Credit Hours.

This course covers the basics of genomic data analysis and visualization. The focus is on general computational methods, their basis in biomedicine, and how to evaluate and visualize analysis results. Students are expected to be able to qualitatively describe the algorithms presented. Prerequisites: CSAT 5095 or Equivalent.

IBMS 5000. Fundamentals Of Biomedical Sciences. 8 Credit Hours.

This core course covers the fundamentals of biochemistry, molecular biology, cell biology, organismal and systems biology, and microbiology and immunology. The course is designed for first-year graduate students matriculating into the Integrated Biomedical Sciences Program (IBMS).

IBMS 5008. Lab Rotations. 1-3 Credit Hours.

This course provides an opportunity for students to participate in research activities in the laboratories of faculty members in different disciplines to learn laboratory skills and to gain an introduction to the research fields of faculty members.

IBMS 6090. Seminar. 1.5 Credit Hour.

This course is required of all students in the IBMS program, except of those who have signed up for Final Hours. Students are required to attend a minimum of 16 seminars per semester and to complete a requirement to demonstrate their attendance and participation. To fulfill the minimum number of seminars, students may include seminars offered by disciplines other than their own in which they are enrolled. However, to enroll, students should obtain permission from the course Section Director affiliated with the appropriate discipline. The course numbers of the individual course sections are INTD 6090-1GEN, 6090-2BA, 6090-3CB, 6090-4CGM, 6090-5MIM, 6090-6MBB, 6090-7NS and 6090-8PP for the IBMS Disciplines: Biology of Aging (BA), Cancer Biology (CB), Cell Biology, Genetics & Molecular Medicine (CGM), Molecular Biophysics & Biochemistry (MBB), Molecular Immunology & Microbiology (MIM), Neuroscience (NS), and Physiology & Pharmacology (PP). Some students who have not declared a discipline, and have obtained the approval of their academic advisor and the Senior Associate Dean of the GSBS, may sign up for INTD 6090-1GEN. Grading will be Satisfactory or Unsatisfactory. A list of seminars from all disciplines will be posted on the Graduate School Web site. Each Section Director will determine, for the relevant IBMS-6090 section, the policy for tracking student's attendance and participation in seminars.

IBMS 6097. Research. 0.5-12 Credit Hours.

This course is required of all students in the IBMS program, except of those who have signed up for Final Hours. Students are required to attend a minimum of 16 seminars per semester and to complete a requirement to demonstrate their attendance and participation. To fulfill the minimum number of seminars, students may include seminars offered by disciplines other than their own in which they are enrolled. However, to enroll, students should obtain permission from the course Section Director affiliated with the appropriate discipline. The course numbers of the individual course sections are INTD 6090-1GEN, 6090-2BA, 6090-3CB, 6090-4CGM, 6090-5MIM, 6090-6MBB, 6090-7NS and 6090-8PP for the IBMS Disciplines: Biology of Aging (BA), Cancer Biology (CB), Cell Biology, Genetics & Molecular Medicine (CGM), Molecular Biophysics & Biochemistry (MBB), Molecular Immunology & Microbiology (MIM), Neuroscience (NS), and Physiology & Pharmacology (PP). Some students who have not declared a discipline, and have obtained the approval of their academic advisor and the Senior Associate Dean of the GSBS, may sign up for INTD 6090-1GEN. Grading will be Satisfactory or Unsatisfactory. A list of seminars from all disciplines will be posted on the Graduate School Web site. Each Section Director will determine, for the relevant IBMS-6090 section, the policy for tracking student's attendance and participation in seminars.

IBMS 7001. Qualifying Exam. 1 Credit Hour.

The objective of the Qualifying Examination (QE) is to determine if a student has met programmatic expectations with regard to: i) Acquiring a level of scientific reasoning and a knowledge base in his/her field of study appropriate for a graduate student at the current stage of training; ii) Demonstrating skills of problem-solving and development of experimental strategies designed to test hypotheses associated with a specific scientific problem; and iii) Demonstrating the ability to defend experimental strategies proposed for solving scientific problems. Successful completion of the QE is required for Advancement to Candidacy and continuation in the IBMS Ph.D. program. During the Spring semester of Year 2 (4th semester overall) of the student's program, the QE will be administered by a faculty committee approved by a student's Discipline leadership. Each IBMS discipline will administer the QE process for its students so as to achieve the goals of the discipline while satisfying the expectations of the IBMS graduate program. In general, the QE requires the solving of a relevant unsolved problem in the biomedical sciences by writing a research proposal based on an idea conceived and developed by the student, followed by an oral defense-of-proposal to explore the student's problem-solving process, and the soundness of the student's experimental design. Following the QE, a report will be submitted by the chair of the examination committee to the student's discipline leadership indicating the outcome of the exam and any recommendations that may be required to foster further academic progress by the student. IBMS 7001 is divided into 7 modules overseen by the 7 IBMS Disciplines, each that is responsible for providing its students with a detailed description of the examination process, and for ensuring that the programmatic expectations and goals of the QE are met.

IBMS 7010. Student Journal Club & Research Presentation. 1-2 Credit Hours.

This course is designed to provide graduate students with experience in critical reading of the primary literature, seminar preparation and presentation, data analysis and interpretation, and group-based learning as they relate to the graduate program in Integrated Biomedical Sciences. This course is required of all students in the IBMS program starting in their second year except of those who have signed up for Final Hours. Students are required to attend a minimum of 16 total presentations per semester (journal club or research presentations) and to complete a requirement to demonstrate their attendance and participation. Students are also required to present one journal club presentation per semester until they are Advanced to Candidacy. Once Advanced to Candidacy, the student will present one journal club presentation per academic year and one research presentation per academic year such that the student is giving at least one presentation in each semester. To enroll, students should obtain permission from the course Section Director affiliated with the appropriate discipline. The course numbers of the individual course sections are INTD 7010-1GEN, 7010-2BA, 7010-3CB, 7010-4CGM, 7010-5MIM, 7010-6MBB, 7010-7NS and 7010-8PP for the IBMS Disciplines: Biology of Aging (BA), Cancer Biology (CB), Cell Biology, Genetics & Molecular Medicine (CGM), Molecular Biophysics & Biochemistry (MBB), Molecular Immunology & Microbiology (MIM), Neuroscience (NS), and Physiology & Pharmacology (PP). Some students who have not declared a discipline, and have obtained the approval of their academic advisor and the Senior Associate Dean of the GSBS, may sign up for INTD 7010-1GEN. Grading will be by letter grade (A, B, C, etc). A list of journal clubs from all disciplines will be posted on the Graduate School Web site. Each Section Director will determine, for the relevant IBMS 7010 section, the policy for tracking student's attendance and participation and will be responsible for assigning a final grade.

IBMS 7099. Dissertation. 1-12 Credit Hours.

This course is required of all students in the IBMS program, except of those who have signed up for Final Hours. Students are required to attend a minimum of 16 seminars per semester and to complete a requirement to demonstrate their attendance and participation. To fulfill the minimum number of seminars, students may include seminars offered by disciplines other than their own in which they are enrolled. However, to enroll, students should obtain permission from the course Section Director affiliated with the appropriate discipline. The course numbers of the individual course sections are INTD 6090-1GEN, 6090-2BA, 6090-3CB, 6090-4CGM, 6090-5MIM, 6090-6MBB, 6090-7NS and 6090-8PP for the IBMS Disciplines: Biology of Aging (BA), Cancer Biology (CB), Cell Biology, Genetics & Molecular Medicine (CGM), Molecular Biophysics & Biochemistry (MBB), Molecular Immunology & Microbiology (MIM), Neuroscience (NS), and Physiology & Pharmacology (PP). Some students who have not declared a discipline, and have obtained the approval of their academic advisor and the Senior Associate Dean of the GSBS, may sign up for INTD 6090-1GEN. Grading will be Satisfactory or Unsatisfactory. A list of seminars from all disciplines will be posted on the Graduate School Web site. Each Section Director will determine, for the relevant IBMS-6090 section, the policy for tracking student's attendance and participation in seminars. Registration is only permitted following a student's admission to candidacy for the PhD degree, approval of the dissertation research proposal and approval of the membership of the candidate's Supervising Committee.

INTD 5007. Advanced Cellular And Molecular Biology. 4 Credit Hours.

This course provides an in-depth learning experience that instructs students on the fundamentals of molecular biology and cell biology as well as prepares the student to evaluate and design new research in the cutting-edge areas of modern molecular biology and cell biology. The course combines a didactic program of lectures along with a small group discussion format in which students interact closely with a group of faculty who have active research programs. The course focuses on active areas of research in molecular biology: Chromatin structure, DNA Transcription, DNA Replication and Repair, Recombination, RNA processing and regulation, Protein processing, targeting and degradation and in cell biology: Cell Signaling and Communication, Cell Growth, and Cell Death. Each week, the faculty provide students with didactic lectures on a current research area. Students and faculty will then jointly discuss key publications that serve to bridge the gap between the fundamental underpinnings of the field and the state of the art in that area.

INTD 5040. Fundamentals Of Neuroscience1: Molecular, Cellular, & Developmental Neuroscience. 2 Credit Hours.

This course is intended to introduce students to a broad survey of the basics of molecular, cellular and developmental neuroscience. The course is organized into a series of three modules: biochemical and cellular properties of nervous system cells, development of neuronal systems, and neutrotransmission and neuromodulation, which covers the fundamentals of these three areas. Current topics and concepts are discussed in discussion sessions that include student participation. Two components; Neuroscience students register for both PHYL 5041 and INTD 5040.

INTD 6007. Advanced Cell Biology. 2 Credit Hours.

This course provides an in-depth learning experience that instructs students on the fundamentals of cell biology as well as prepares the student to evaluate and design new research in the cutting-edge areas of modern cell biology. The course combines a didactic program of lectures along with a small-group discussion format in which students interact closely with a group of faculty who have active research programs. The course focuses on active areas of research in cell biology: Cell Signaling and Communication, Cell Growth, and Cell Death. Each week, the faculty jointly discuss key publications that serve to bridge the gap between the fundamental underpinnings of the field and the state of the art in that area. Students and faculty will then jointly discuss key publications that serve to bridge the gap between the fundamental underpinnnings of the field and the state of the art in that area.

INTD 6008. Mitochondria & Apoptosis. 1 Credit Hour.

This course will focus in depth on Mitochondria and Apoptosis. Topics will include: Mitochondria and Respiration; Mitochondria and Reactive Oxygen Species; Mitochondria and Apoptosis. It will provide an opportunity for a unique learning experience where the student can prepare to evaluate and design new research in the cutting-edge areas of modern cell biology and molecular biology. Instead of a didactic program of lectures, the entire course comprises a small-group format in which students interact closely with a group of faculty who have active research programs. Each week, faculty will provide students with a brief overview of the research area. Students and faculty will then jointly discuss key publications that serve to bridge the gap between the student's prior understanding of the field and the state of the art in that area.

INTD 6009. Advanced Molecular Biology. 2 Credit Hours.

This course will provide an in-depth learning experience on the fundamentals of molecular biology as well as prepare the student to evaluate and design new research in the cutting-edge areas of modern molecular biology. The course combines a didactic program of lectures along with a small- group discussion format in which students interact closely with a group of faculty who have active research programs. The course focuses on active areas of research in molecular biology: Chromatin structure, Transcription, DNA Replication and Repair, Recombination, RNA processing and regulation, Protein processing, targeting and degradation. Each week, the faculty provide students with didactic lectures on a current research area. Students and faculty then jointly discuss Key publications that serve to bridge the gap between the fundamental underpinnings of the field and the state of the art in that area.

MICR 5025. Eukaryotic Pathogens. 1 Credit Hour.

The course will provide students with the opportunity to gain a basic comprehensive understanding of parasitology and mycology. The first part of this course will focus on virulence mechanisms and the host immune response with respect to a variety of parasites that cause major human diseases. The second part of this course will cover several important areas of medical mycology including molecular biology, diagnostic/epidemiology, mating/phenotypic switching, morphology, pathogenesis, and antifungal therapies.

MICR 5026. Bacterial Pathogenesis. 1 Credit Hour.

This is an introductory course in microbial pathogenesis focusing on bacterial pathogens that are important in human disease. Students will receive a foundation in the basic concepts and experimental approaches that are crucial for understanding the discipline through directed readings and didactic instruction. Specific concepts, strategies, and mechanisms used by human bacterial pathogens to cause disease will be illustrated.

MICR 5028. Virology. 1 Credit Hour.

This course focuses on the molecular and cellular biology of animal viruses, and their interactions with host cells. Many of the viruses to be covered in this course are medically significant or have provided critical information that has expanded our understanding of cell biology, immunology, development, and differentiation.

MICR 6052. Advanced Immunobiology. 3 Credit Hours.

MICR 6052 is composed of 2 separate Modules that are designed to build on the immunological concepts covered in IBMS 5000 given in the Fall semester and to put those concepts to use as we focus on understanding the world of the mammalian host response to infection. In addition, students will gain a more detailed understanding of the current concepts, approaches, and applications of research in the field of immunology. Module 1 is devoted entirely to understanding fundamental concepts in immunology primarily through lectures and including some in-class discussion. Module 2 is focused on applying fundamental immunological concepts to the understanding of current immunological research questions in a student-presentation and in-class discussion format. Prerequisites: IBMS 5000 or consent of instructor. Open for Cross Enrollment on Space Available Basis.

MMED 5015. Modern Methods in Molecular Analysis. 2 Credit Hours.

Modern Methods in Molecular Analysis, (MMED 5015), Fall Semester Only - This course is designed to introduce students to the basic experimental techniques used in the study of cell biology, biochemistry, molecular biology, protein analysis, genomics, and personalized molecular medicine. This course will include didactic lectures as well as laboratory demonstrations and group learning activities.

MMED 6016. Advanced Molecular, Cellular, and Synthetic Biology. 4 Credit Hours.

Advanced Molecular, Cellular, and Synthetic Biology, (MMED 6016), Fall Semester Only- This foundational course is a study of the organization and function of the genome at the molecular level. The topics include: gene structure, transcriptional control, RNA structure and processing, translation, genome replication and repair, the regulation of cell division, signal transduction, hormone regulation, epigenetic regulation, the molecular biology of tumors, and the regulation of proteins. Also included will be the use of CRISPR-Cas and other synthetic biological methods used in research and clinical applications (Science 2015 349; 1564). This is an advanced course intended to introduce the student to the important molecules involved in the life processes of the cell. Their structure, function, localization, and interactions will be the focus of study. The students will also be introduced to the implications that these molecular events have in human health and disease and how research of these molecular events can form the foundation of personalized molecular medicine approaches.

PHAR 5013. Principles Of Pharmacology & Physiology 1. 3 Credit Hours.

Topics include principles of drug action; receptor classification and quantitation; dose response relationships; cellular mechanisms of drug action; fundamental concepts of drug receptor interactions; voltage gated and ion channels; drug actions mediate by transduction and non-transduction enzymes; time course of drug action; absorption, distribution, biotransformation and elimination of drugs; pharmacokinetics; and experimental approaches to drug action.

PHYL 5041. Excitable Membranes. 1 Credit Hour.

This course addresses fundamental mechanisms of cell excitability in neurons and other excitable tissues. The format is a combination of lectures, readings, discussions, a laboratory demonstration, and online simulations (where available). Examples of the latter include activities to simulate the resting membrane potential and action potentials. The module will emphasize contemporary issues in the scientific literature as well as translational science where dysfunction in ion channels underlie common disorders such as Alzheimer's Disease, Myasthenia Gravis, Cystic Fibrosis, Long QT Syndrome, and Epilepsy to name just a few. PHYL 5041 is a co-requisite for Fundamentals of Neuroscience I as it is the first module of that course, but it also can be taken as a standalone one-hour course.

TSCI 5070. Responsible Conduct of Research. 2 Credit Hours.

This foundational course introduces students to core ethical content necessary for responsible research conduct. Through interactive seminars, students will learn about (1) scientists as responsible members of society (contemporary ethical issues in biomedical research and environmental/social impacts of research), (2) policies for research with human subjects and vertebrate animals, (3) collaborative research, (4) conflicts of interest (personal, professional, financial), (5) data acquisition and laboratory tools (management, sharing, ownership), (6) responsible authorship and publication, (7) mentor/trainee responsibilities and relationships, (8) peer review (9) research misconduct (forms of misconduct and management policies) (10) informed consent, privacy regulations, good clinical practice, and special populations in clinical investigations.